Honeywell

8680i
 Wearable Mini Mobile Computer

Disclaimer

Honeywell International Inc. ("HII") reserves the right to make changes in specifications and other information contained in this document without prior notice, and the reader should in all cases consult HII to determine whether any such changes have been made. The information in this publication does not represent a commitment on the part of HII.
HII shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material. HII disclaims all responsibility for the selection and use of software and/or hardware to achieve intended results.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of HII.
Copyright © 2018-2019 Honeywell International Inc. All rights reserved.
Web Address: www.honeywellaidc.com
For patent information, refer to www.hsmpats.com.
Microsoft Windows, Windows NT, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation.
The Bluetooth word mark and logos are owned by Bluetooth SIG, Inc.
Android is a trademark of Google Inc.
Apple is a trademark of Apple Inc., registered in the U.S. and other countries.
Zebra is a trademark of ZIH Corp., registered in many jurisdictions worldwide.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other companies and are the property of their respective owners.

TABLE OF CONTENTS

Customer Support ix
Chapter 1 - Get Started 1
About This Manual 1
Unpack Your Device 1
8680i Overview 2
Use the 8680i with a Wearable Accessory 2
Remove Bottom Latch Plate 9
Reading Technique 10
Battery and Charge Information 10
User Window 15
Connect the 8680i to Your Network 17
NFC Mode (Tap and Pair) for Android ${ }^{\text {TM }}$ Devices 25
Pair with an Android, Apple ${ }^{\text {TM }}$ or Windows ${ }^{\circledR}$ Mobile Device: HID Keyboard Mode 26
Pair with a Honeywell Communication and Charge Base or Access Point 30
Pair with a Vocollect Device 31
Disconnect from the Host 32
Unpair When Charging 32
Configure the 8680i with EZConfig for Scanning 33
Menu Bar Code Security Settings 34
Set Custom Defaults 34
Reset Custom Defaults 35
Chapter 2 - Wireless System Operation 37
Change the 8680i's Bluetooth PIN Code 37
Minimize Bluetooth/ISM Band Network Activity 37
Communication Between the 8680i and the Host. 40
RF (Radio Frequency) Operation 40
System Conditions 40
Reset Scanner 41
Scanner Report 41
Scanner Address 41
Out-of-Range Alarm 42
Scanner Power Time-Out Timer 43
Flexible Power Management 44
Batch Mode 45
Device Name 51
Host Acknowledgment. 52
Chapter 3 - Input/Output Settings. 55
Power Up Beeper. 55
Beep on BEL Character 55
Trigger Click 56
Good Read and Error Indicators 56
Manual Trigger Modes 60
Serial Trigger Mode 61
Object Detection Mode 61
Poor Quality Codes. 63
Illumination Lights 63
Aimer Delay 64
Aimer Mode 65
Centering 65
Keyboard Wedge Modifiers 67
Preferred Symbology 68
Output Sequence Overview 70
Enter Output Sequence 74
Multiple Symbols 77
No Read 78
Video Reverse 78
Working Orientation 79
Chapter 4 - Data Edit 81
Prefix/Suffix Overview 81
Prefix Selections 83
Suffix Selections 84
Function Code Transmit 84
Intercharacter, Interfunction, and Intermessage Delays 84
Chapter 5 - Data Format 87
Data Format Editor Introduction 87
Show Data Format 88
Add a Data Format 88
Data Format Editor Commands 90
Data Formatter 103
Primary/Alternate Data Formats 105
Chapter 6 - Symbologies. 107
All Symbologies 108
Message Length Description 108
Codabar 108
Code 39 111
Interleaved 2 of 5 115
NEC 2 of 5 116
Code 93 118
Straight 2 of 5 Industrial (three-bar start/stop) 119
Straight 2 of 5 IATA (two-bar start/stop) 120
Matrix 2 of 5 121
Code 11 122
Code 128 123
GS1-128 125
Telepen 126
UPC-A 127
UPC-A/EAN-13 with Extended Coupon Code 130
Coupon GS1 DataBar Output 131
UPC-EO 131
UPC-E1 134
EAN/JAN-13 134
EAN/JAN-8 141
MSI 143
GS1 DataBar Omnidirectional 145
GS1 DataBar Limited 146
GS1 DataBar Expanded 146
Trioptic Code 147
Codablock A 147
Codablock F 148
Label Code 149
PDF417 149
MacroPDF417 150
MicroPDF417 150
GS1 Composite Codes 151
GS1 Emulation 152
TCIF Linked Code 39 (TLC39) 153
QR Code 153
DotCode 155
Data Matrix 156
MaxiCode 158
Aztec Code 159
Chinese Sensible (Han Xin) Code 160
Postal Codes - 2D 161
Postal Codes - Linear 166
Chapter 7 - Imaging Commands 169
Single-Use Basis 169
Command Syntax 169
Image Snap - IMGSNP 170
Image Ship - IMGSHP 173
Intelligent Signature Capture - IMGBOX 183
RF Default Imaging Device 188
Chapter 8 - Utilities 189
Add a Test Code I.D. Prefix to All Symbologies 189
Show Software Revision 189
Test Menu 189
TotalFreedom 190
Application Plug-Ins (Apps) 190
EZConfig-Scanning Introduction 191
Reset the Factory Defaults 191
Chapter 9 -Serial Programming Commands 193
Conventions 193
Menu Command Syntax 193
Query Commands 194
Trigger Commands 196
Reset the Custom Defaults 196
Menu Commands 197
Chapter 10-Advanced Application Programming 221
Beeper and LED Sequences 221
Text Settings 222
Screen Display Settings 225
Chapter 11 - Product Specifications 229
8680i Wearable Mini Mobile Computer 229
MB4-SCN02 Charge Base Product Specifications 231
MB4-BAT-SCNO2 Charge Base Product Specifications 231
Required Safety Labels 232
Chapter 12 - Maintenance and Troubleshooting 235
Repairs 235
Maintenance 235
Troubleshooting 236
Appendix A - Reference Charts 239
Symbology Charts 239
ASCII Conversion Chart (Code Page 1252) 242
Lower ASCII Reference Table 243
ISO 2022/ISO 646 Character Replacements 246
Keyboard Key References 249
Sample Symbols 251
Programming Chart 253

Customer Support

Technical Assistance

To search our knowledge base for a solution or to log in to the Technical Support portal and report a problem, go to www.hsmcontactsupport.com.

For our latest contact information, see www.honeywellaidc.com/locations.

Product Service and Repair

Honeywell International Inc. provides service for all of its products through service centers throughout the world. To obtain warranty or non-warranty service, return your product to Honeywell (postage paid) with a copy of the dated purchase record. To learn more, go to www.honeywellaidc.com and select Service \& Repair at the bottom of the page.

Limited Warranty

For warranty information, go to www.honeywellaidc.com and click Get Resources > Product Warranty.

About This Manual

This User Guide provides installation and programming instructions for the 8680i wearable mini mobile computer. Product specifications, dimensions, warranty, and customer support information are also included.

Honeywell devices are factory programmed for the most common terminal and communications settings. If you need to change these settings, programming is accomplished by scanning the bar codes in this guide.

An asterisk (*) next to an option indicates the default setting.

Unpack Your Device

After you open the shipping carton containing the product, take the following steps:

- Check for damage during shipment. Report damage immediately to the carrier who delivered the carton.
- Make sure the items in the carton match your order.
- Save the shipping container for later storage or shipping.

8680i Overview

Use the 8680i with a Wearable Accessory

The 8680i module can be attached to a triggered ring or a hand strap.

Attach the 8680i to a Triggered Ring

1. Turn over the 8680i and line up the 2 longer tabs of the bottom plate (supplied with the triggered ring) with the front edge of the scanner.
2. Slide the spring latch back to lock the bottom plate in place.

3. Use the 2 screws supplied with the trigger to secure the plate to the 8680 i .
4. Place the finger strap in the correct orientation (right or left hand), and push into the bottom plate. The spring latch locks into place.

5. Place the 8680i on your hand.

6. Pull the finger strap to secure it and tuck the excess strap length into the finger guide channel.

7. Press the trigger to power up the scanner. The battery, WiFi, and Bluetooth status appear in the window.

Wrist Position When Scanning

Warning: Do not stare directly into the laser beam.

Right or Left Handed Operation

To release the triggered ring, turn over the 8680i. Slide the spring latch forward to release the triggered ring. Turn the finger strap around and snap it into place to change the operation to the correct hand.

Attach the 8680i to a Glove Mount

1. Turn over the $8680 i$ and line up the 2 longer tabs of the glove mount with the front edge of the scanner.
2. If equipped, slide the spring latch back to lock the glove mount in place.

3. Use the 2 screws to secure the glove mount to the 8680i.

Connect the 8680i to the Glove

1. Open the device harness.

2. Connect the 8680 i to the Glove.

3. Close the device harness.

4. Loosen the straps.

5. Slide your hand into the glove.

6. Tighten the strap around your index finger, palm, and wrist.

7. Fasten the strap on the index finger. Continue to tighten the strap around the wrist.

8. Slide the buckle onto the strap.

9. Fold the strap over and press down to secure.

Scan Bar Codes

Press the button on the index finger to scan.

Remove Bottom Latch Plate

1. Turn over the 8680 i and remove the 2 screws that secure the bottom plate.
2. If equipped, slide the spring latch toward the charging contacts to remove the bottom plate.

Reading Technique

Center the Aimer

The 8680i has a view finder that projects a bright aiming pattern. This aiming pattern should be centered over the bar code, but it can be positioned in any direction for a good read.

The aiming pattern is smaller when the 8680i is closer to the code and larger when it is farther from the code. Symbologies with smaller bars or elements (mil size) should be read closer to the unit. Symbologies with larger bars or elements (mil size) should be read farther from the unit. To read single or multiple symbols (on a page or on an object), hold the $8680 i$ at an appropriate distance from the target, press the trigger, and center the aiming pattern on the symbol. If the code being scanned is highly reflective (e.g., laminated), it may be necessary to tilt the code up 15° to 18° to prevent unwanted reflection.

Battery and Charge Information

The battery must be fully charged before the first use. An MB4/MB12-BAT-SCNO2 or an MB4/MB12-SCNO2 Charging Station must be purchased separately.

Replace the Battery

When the battery is low, the 8680i beeps and vibrates and the window shows a Battery Low warning. You can also press both the right and left buttons at any time to view the battery's charge status.

Note: The battery should be replaced in an environment free from excessive dust or particulate to avoid an internal buildup of dust in the unit.

To replace the battery, squeeze the battery latch and lift up on the battery.

Replace the battery by snapping it in to the 8680i.
The BAT-SCNO2 high capacity lithium ion battery or the BAT-SCNO3 standard capacity lithium ion battery can be used. Batteries are not fully charged when shipped. The battery should be charged for a minimum of 4 hours before initial use to ensure optimal performance.

Caution: There is a danger of explosion if the batteries are incorrectly replaced. Use only Honeywell lithium ion battery packs, model numbers BAT-SCN02 or BAT-SCN03 in this device. Use of any non-Honeywell battery may result in damage not covered by the warranty. Dispose of used batteries according to the recycle program for batteries as directed by the governing agency for the country where the batteries are to be discarded.

Battery Recommendations

- The battery is a lithium ion cell that can be used without a full charge and can also be charged without fully discharging without impacting the battery life. There is no need to perform any charge/discharge conditioning on this type of battery.
- Replace a defective battery immediately since it could damage the 8680i.
- Although your battery can be recharged many times, it will eventually be depleted. Replace it after the battery is unable to hold an adequate charge.
- If you are not sure if the battery or charger is working properly, send it to Honeywell International Inc. or an authorized service center for inspection. Refer to Customer Support on page ix for additional information.

Safety Precautions for Lithium Batteries

- Do not place batteries in fire or heat the batteries.
- Do not store batteries near fire or other high temperature locations.
- Do not store or carry batteries together with metal objects.
- Do not expose batteries to water or allow the batteries to get wet.
- Do not connect (short) the positive and negative terminals, of the batteries, to each other with any metal object.
- Do not pierce, strike or step on batteries or subject batteries to strong impacts or shocks.
- Do not disassemble or modify batteries.

Proper Disposal of the Battery

When the battery has reached the end of its useful life, the battery should be disposed of by a qualified recycler or hazardous materials handler. Do not incinerate the battery or dispose of the battery with general waste materials. You may send the 8680i's battery to us. (postage paid). The shipper is responsible for complying with all federal, state, and local laws and regulations related to the packing, labeling, manifesting, and shipping of spent batteries. Contact the Customer Support (page ix) for recycling or disposal information. Since you may find that your cost of returning the batteries significant, it may be more cost effective to locate a local recycle/disposal company.

Charge the Battery

Refer to the MB4-SCN02/MB12-SCN02 Multi-Bay Scanner Charger Quick Start Guide or the MB4-BAT-SCNO2/MB12-BAT-SCNO2 Multi-Bay Battery Charger Quick Start Guide, available at www.honeywellaidc.com, for complete information about the operation of the chargers.

Multi-Bay Device Chargers

Line the 8680i's battery contacts up with the contacts in the charging pocket. Firmly press the 8680 i straight down into the battery charging pocket. The LED to the left of the pocket lights up in white when the 8680 i is properly inserted.

It is important that 8680is are inserted into the charging pocket correctly. Inserting the battery incorrectly could result in damage to the 8680i or the charger.

When the 8680 is placed in a charging pocket, the charger begins charging the battery. There is a slight delay while the charger evaluates the condition of the battery before charging begins. While charging, the user window shows the battery status.

Multi-Bay Battery Chargers

Line the battery's contacts up with the contacts on the charging pocket. Firmly press the battery into the battery charging pocket. The LED to the left of the pocket lights up in an amber color when the battery is properly inserted.

It is important that batteries are inserted into the charging pocket correctly. Inserting the battery incorrectly could result in damage to the battery or the charger.

When a battery is placed in a charging pocket, the charger begins charging the battery. There is a slight delay while the charger evaluates the condition of the battery before charging begins. While charging, the red LED on the battery charger indicates the battery has a low charge, yellow indicates a moderate charge, and green indicates the battery has been fully charged and can be removed.

User Window

The window shows prompts for using the scanner in your environment. The buttons to the left and right of the window are used to scroll through the windows or to enter responses to screen prompts.

- Press both the right and left buttons at the same time to view the WiFi, Bluetooth, and battery status.
- Press and hold the left button for 6 seconds to restart the scanner.

WiFi and Bluetooth Status

The following symbols indicate the status of your WiFi and Bluetooth connections.

WiFi Icons	Indication
No WiFi icon	WiFi Off
て	WiFi On - Strong Signal
\bigcirc	WiFi On - Weak Signal
-	WiFi On - Poor Signal
$\overbrace{}^{(10}$	WiFi On and Disconnected
$\stackrel{\otimes}{2}$	WiFi - No Connection

Bluetooth Icons	Indication
No Bluetooth icon	Bluetooth Off
Flashing Bluetooth icon	Bluetooth Attempting to Connect
\$	Bluetooth On and Connected
\&	Bluetooth On and Disconnected
Bluetooth - No	
Connection	

Screen Display Settings

These commands shows additional information in the lower left corner of the display. Default = Off.

These commands turn the icon bar On or Off. Default = Off.

Connect the 8680i to Your Network

Pair the 8680i with Bluetooth Devices

Pair with a PC or Laptop Bluetooth Serial Port: Host Reconnect Mode

The 8680i can pair with host Bluetooth devices such as personal computers, laptops, and tablets. In this mode, the host will continually attempt to connect with the scanner. If the scanner and the host become disconnected, the host will manage the reconnection.

1. Scan the Host Reconnect Mode bar code below.

Host Reconnect Mode
2. Set your host device so it searches for other Bluetooth devices. (Refer to your host device's User Guide for pairing instructions.)
3. Once your host device has located the scanner, select the 8680i scanner name from the list displayed.

Note: If you are connecting to a device with Bluetooth 2.0 or lower and requires a PIN, see Enter a Bluetooth PIN on page 27.

The Bluetooth symbol appears in the scanner window when the scanner pairs with a host.

Pair with a PC or Laptop Bluetooth HID Keyboard Mode

In this mode, the 8680i pairs with a Bluetooth device using a HID keyboard. This mode is used to connect the 8680i for firmware updates through EZConfig for Scanning.

1. Scan a Bluetooth HID Keyboard Connect bar code below.

* Bluetooth HID Keyboard

Connect

Bluetooth HID Japanese Keyboard Connect
2. Set your host device so it searches for other Bluetooth devices. (Refer to your host device's User Guide for pairing instructions.)
3. Once your host device has located the scanner, select the 8680i scanner name from the list displayed.

Note: If you are connecting to a device with Bluetooth 2.0 or lower and requires a PIN, see Enter a Bluetooth PIN on page 27.

The Bluetooth symbol appears in the scanner window when the scanner pairs with a host.

Set Keyboard Country Layout

If your interface is Bluetooth HID Keyboard or your connected to a Honeywell Access Point using Keyboard Emulation (see Pair with a Honeywell
Communication and Charge Base or Access Point), your keyboard layout default is a US keyboard. To change this layout, scan the appropriate Keyboard Country bar code below. By default, national character replacements are used for the following characters: \# \$ @ [\]^‘\{|\}~. Refer to the ISO 2022/ISO 646 Character Replacements to view the character replacements for each country.

Keyboard Countries

 KBDCTYO.
 * United States

KBDCTY44. Lithuania

Malta

Keyboard Countries (Continued)

Slovenia

KBDCTY24. Turkey Q

Keyboard Countries (Continued)

United States (Dvorak left)

Pair with Bluetooth Low Energy (BLE) Devices

Use the following codes to connect to Bluetooth low energy devices. Scan HID BLE Connect to connect the 8680i to Bluetooth Low Energy HID devices. Scan Serial BLE Connect to establish two-way communication between the 8680i and Bluetooth Low Energy serial devices.

HID bLE Connect

Serial BLE Connect

NFC Mode (Tap and Pair) for AndroidTM Devices

You can pair your Android ${ }^{\text {M }}$ phone with the 8680i by touching the devices together.

1. Scan the Bluetooth Serial Port Profile Connect or Bluetooth HID Keyboard Connect bar code.

Bluetooth Serial Port Profile Connect

Bluetooth HID Keyboard Connect
2. Scan the NFC On bar code with the 8680i.

3. Make sure the NFC setting is $\mathbf{O n}$ in your phone.
4. Touch the Android phone to the scanner.
5. The phone recognizes the scanner and prompts you to pair.
6. Verify the pairing of the 8680 in your phone's Bluetooth settings.

Pair with an Android, Apple ${ }^{T \mathrm{TM}}$ or Windows ${ }^{\ominus}$ Mobile Device: HID Keyboard Mode

The 8680i can pair with Android, Apple, and Windows mobile devices, excluding Windows CE and Mobile.

Note: The 8680i only supports connecting to Apple devices using Bluetooth HID mode.

1. Set your mobile device so it searches for other Bluetooth devices. (Refer to your mobile device's User Guide for pairing instructions.)
2. Scan the Bluetooth HID Keyboard Connect bar code below.

Bluetooth HID Keyboard
3. On the mobile device, the 8680 i scanner is shown as a keyboard. Click on it to pair.

Note: If you are connecting to a device with Bluetooth 2.0 or lower and requires a PIN, see Enter a Bluetooth PIN on page 27.

The Bluetooth symbol appears in the scanner window when the scanner pairs with a mobile device.

Enter a Bluetooth PIN

If your host device does not automatically pair with the 8680i, a PIN is displayed. This PIN must be scanned within 30 seconds. Using the 8680i, you must quickly scan Bluetooth PIN Code below, then scan the numeric bar code(s) for the PIN code from the chart below, then scan the Save bar code.

3

4

6

7

8

9

Save
The Bluetooth symbol appears in the scanner window when the scanner pairs with a host.

Virtual Keyboard

Once your 8680i has been connected directly to a smart phone or laptop, you can toggle the virtual keyboard on your device using the 8680i trigger. If you have paired with an Apple device, the on-screen keyboard is activated by pressing the 8680i trigger twice, quickly. If you have paired with an Android device (v 4.4 and higher), the on-screen keyboard must be configured by going to Settings Language \& input. Tap on Default and change the setting for Hardware Physical keyboard to Off.

Pair with a Honeywell Vehicle Mount or Dolphin CT40 or CT60 Mobile Computer

1. Scan the Bluetooth Serial Port Profile Connect bar code for serial port connection or Bluetooth HID Keyboard Connect bar code for HID keyboard emulation connection.

Bluetooth Serial Port Profile Connect

Bluetooth HID Keyboard Connect
2. Use the 8680i to scan the EZPairing bar code that is either supplied with the device, attached to the device, or displayed on the screen. The EZPairing bar code begins with [FNC3\} LnkB, followed by 12 digits, like the sample below.

LnkBxxxxxxxxxxxx
3. The Bluetooth symbol appears in the user window when the 8680i pairs with a host. Once the 8680i battery is charged and you have paired it to a host device, you may begin scanning bar codes. Verify the 8680i operation by scanning a bar code from the Sample Symbols beginning on page 251.

Pair with a Zebra® Device

1. Scan the Bluetooth Serial Port Profile Connect bar code for serial port connection or Bluetooth HID Keyboard Connect bar code for HID keyboard emulation connection.

Bluetooth Serial Port Profile Connect

Bluetooth HID Keyboard Connect
2. Use the 8680 i to scan the bar code that is either supplied with the device, attached to the device, or displayed on the screen. The bar code begins with [FNC3\} B, followed by 12 digits, like the sample below.

3. The Bluetooth symbol appears in the user window when the 8680 i pairs with a host. Once the 8680i battery is charged and you have paired it to a host device, you may begin scanning bar codes. Verify the 8680i operation by scanning a bar code from the Sample Symbols beginning on page 251.

Pair with a Honeywell Communication and Charge Base or Access Point

The 8680i can communicate with the following Honeywell Communication and Charge base (CCB) and Honeywell Bluetooth Access Points:

Granit CCBs:

- CCBO2-100BT-07N
- CCB05-100BT-07N

Xenon CCBs:

- CCB01-010BT-07N

Access Points:

- AP-100BT-07N
- AP05-100BT-07N
- AP-010BT-07N

To connect to a CCB or Access Point, scan the CCB/AP Connect bar code. To remove this connection, scan the CCB/AP Disconnect.

Note: The 8680i cannot be charged with a CCB.

1. Turn on the computer (laptop/desktop) that hosts the CCB or Access Point and be sure all the CCB or Access Point connections have been made.
2. Apply the linking bar code that came with your CCB or Access Point to that device.
3. Scan the linking bar code on the CCB or Access Point to establish a connection between the CCB or Access Point and the scanner. The scanner emits a short beep and a green check mark appears in the User Window to confirm a connection with the CCB or Access Point.

Pair with a Vocollect Device

In this mode, the scanner will continually attempt to connect with the host. If the scanner and the host become disconnected, the scanner will manage the reconnection.

1. Scan the Bluetooth Serial Port Profile Connect bar code below.

2. Configure the 8680i with the termination characters used for your workflow. This is often a carriage return and line feed, which can be programmed by scanning the following bar code:

See Suffix Selections if you require other termination characters.
3. In the VoiceConsole, set the Vocollect device to:

- Pairing type Bluetooth Scanner
- Connection mode Device listens for peripheral connection
- Security type Disabled

4. Simple scan-based pairing can be accomplished by creating a dedicated pairing bar code and applying it to each Vocollect device. The EZPairing bar code begins with \{FNC3\} LnkB, followed by 12 digits, like the sample below.

||
 LnkBxxxxxxxxxxxx

5. The Bluetooth symbol changes from crossed out or flashing to continuously lit in the user window status screen when the 8680i pairs with a host. (See WiFi and Bluetooth Status.) Once the 8680i battery is charged and you have paired it to a host device, you may begin scanning bar codes. Verify the 8680i operation by scanning a bar code from the Sample Symbols, beginning on page 251.

Disconnect from the Host

Once your scanner has been connected to a host, you must disconnect it in order to communicate with a different device. Scan the Bluetooth Disconnect bar code to unlink the scanner from the currently linked host.

Bluetooth Disconnect

Unpair When Charging

If you want the 8680i to automatically unpair when placed in a charger, scan the Unpair When Charging bar code below. When set to Off, placing the 8680i in the charger has no effect on pairing. Default = Off.

Configure the 8680i with EZConfig for Scanning

Use the EZConfig for Scanning tool to configure your 8680i online:

1. Access the Honeywell Technical Support Downloads Portal at https:// hsmftp.honeywell.com.
2. Go to Software > Barcode Scanners > Software > Tools and Utilitites > EZConfig for Scanning > Current.

3. Download the Setup version of EZConfig for Scanning.
4. Once EZConfig is installed, scan the Bluetooth Connect - EZCS bar code below.

5. Open EZConfig to configure your 8680i.

Connect the 8680i to WiFi

Note: WiFi capability is only supported by the advanced version of the 8680i.
The 8680i goes into sleep mode when there is no activity for 10 seconds. It must be awake to connect to WiFi. Press the trigger to make sure it is awake for this process.
The 8680i can be configured for WiFi networks using EZConfig for Scanning.

1. Access the Wi-Fi properties on your PC. You will need this information to fill out the EZConfig for Scanning form.
2. Open EZConfig for Scanning after connecting via Bluetooth (page 33).
3. Select the Scan Data Window tab, then the Create WiFi Bar Code tab.
4. Select SSID encryption type.
5. Enter WiFi SSID.
6. Enter WiFi Encryption Key.
7. Enter Preshared Key.
8. Enter Roaming threshold. The range is -60 to -100 .
9. Select Supported bands.
10. For DHCP IP, check DHCP server. For Static IP, make sure DHCP server is unchecked.
11. For Static IP:
a. Enter the IP address of the 8680 i .
b. Enter the Subnet Mask from the computer.
c. Enter the Default Gateway from the computer.
12. Enter the computer IP address in IP of the barcode decoder server.
13. Enter TCP port as 3390.

14. Click Create 2D Wifi Bar Code.

15. Print the bar code and scan it with the 8680i to connect to the Wi-Fi network.

Menu Bar Code Security Settings

Honeywell scanners are programmed by scanning menu bar codes or by sending serial commands to the 8680i. If you want to restrict the ability to scan menu codes, you can use the Menu Bar Code Security settings. Please contact the nearest technical support office (see Technical Assistance on page ix) for further information.

Set Custom Defaults

You have the ability to create a set of menu commands as your own, custom defaults. To do so, scan the Set Custom Defaults bar code below before scanning the menu commands for your custom defaults. If a menu command requires scanning numeric codes from the Programming Chart, then a Save code, that
entire sequence is saved to your custom defaults. When you have entered all the commands you want to save for your custom defaults, scan the Save Custom Defaults bar code.

Note: Scanning the Save Defaults bar code also causes both the $8680 i$ and the host to perform a reset and become unlinked. You must relink (pair) the 8680i to the host.

You may have a series of custom settings and want to correct a single setting. To do so, just scan the new setting to overwrite the old one. For example, if you had previously saved the setting for Beeper Volume at Low to your custom defaults, and decide you want the beeper volume set to High, just scan the Set Custom Defaults bar code, then scan the Beeper Volume High menu code, and then Save Custom Defaults. The rest of the custom defaults remain, but the beeper volume setting is updated.

Reset Custom Defaults

If you want the custom default settings restored to your 8680i, scan the Activate Custom Defaults bar code below. This is the recommended default bar code for most users. It resets the $8680 i$ to the custom default settings. If there are no custom defaults, it resets the 8680i to the factory default settings. Any settings that have not been specified through the custom defaults are defaulted to the factory default settings.

Activate Custom Defaults
Note: The 8680i resets and becomes unlinked from the host after using the Defaults commands. See Auto Reconnect Mode on page 38 to relink the 8680i.

WIRELESS SYSTEM OPERATION

The following information describes wireless settings. For information about connecting to a wireless or Bluetooth network, see Connect the 8680i to Your Network, beginning on page 17.

Change the 8680i's Bluetooth PIN Code

Some devices require a PIN code as part of the Bluetooth security features. The 8680 i default PIN is $\mathbf{1 2 3 4}$, which you may need to enter the first time you connect to your host. When using multiple 8680is, you may want to change the PIN so each 8680 i is uniquely identified. The PIN code must be between 1 and 16 characters. To change the PIN for the 8680i, scan the bar code below and then scan the appropriate numeric bar codes from the Programming Chart, beginning on page 253. Scan Save to save your selection.

Bluetooth PIN

Minimize Bluetooth/ISM Band Network Activity

The settings described below can help you customize the relinking behavior of your wireless system to obtain the best compromise between convenience and low interference.

Note: ISM band refers to the 2.4 to 2.48 GHz frequency band used by wireless networks, cordless phones, and Bluetooth.

Auto Reconnect Mode

Auto Reconnect controls whether or not the 8680i automatically begins the relink process when a loss of connection is detected. When the Auto Reconnect On bar code is scanned, the 8680i begins the relink process immediately, without user intervention. Default = Auto Reconnect On.

* Auto Reconnect On

BT_ACM0.
Auto Reconnect Off
Note: If you are connecting to a Bluetooth Interface Module, set Auto Reconnect to Off.
The table below shows the results of the Auto Reconnect On and Off settings:

Event	Auto Reconnect On	Auto Reconnect Off
8680i out of range	Relink occurs automatically. If maximum number of link attempts is unsuccessful, then the 8680i must be relinked by either pressing the trigger or relinking the 8680i to the host. See Maximum Link Attempts on page 38.	The 8680i is relinked by pressing the trigger or relinking to the host.
Host reset (firmware upgrade or power cycle)	8680i behaves as if out of range.	No attempt to relink made while host is powered off. Trigger must be pressed to initiate relinking.
8680i power down due to Power Time-Out Timer setting (see page 2-43)	Trigger must be pressed.	
8680i reset due to firmware upgrade	Relink occurs automatically.	
8680i reset due to battery change	Relink occurs automatically.	

Maximum Link Attempts

The Maximum Link Attempts setting controls the number of times the 8680i tries to form a connection with a host. During the connection setup process, the 8680 i transmits in order to search for and connect to a host. In order to prevent continuous transmissions that could interfere with other users of the ISM band, the number of attempts to connect is limited by this setting. After the maximum number of attempts is reached, the 8680i does not attempt to reconnect to a host. Pressing the trigger, scanning a host linking bar code, or pairing the 8680i with a host resets the attempt count and the 8680i tries to link again.

Scan the Maximum Link Attempts bar code, then scan the number of attempts for the setting (from 0-100) from the Programming Chart, beginning on page 253. Scan Save to save the setting. Default $=0$.

Maximum Link Attempts
Note: When Auto Reconnect Mode is On, setting Maximum Link Attempts to zero causes the 8680i to try to link until the Power Time-Out Timer setting (see page 2-43) expires. When Auto Reconnect Mode is Off, setting Maximum Link Attempts to zero causes the 8680i to only attempt linking one time after a trigger press.

Relink Time-Out

Relink Time-Out controls the idle time between relink attempts. An attempt to link the 8680 i to a host typically lasts up to 5 seconds. This is the time when the 8680i is actually attempting a contact. Relink Time-Out controls the amount of time, in seconds, that elapses between the end of one connection attempt and the start of the next.

Note: The length of time for an attempt depends on the number of 8680is that are connected to a host. An extra 7 seconds may be required when a connection is successful.

Scan the Relink Time-Out bar code, then scan the number of seconds for the setting (from 1-100) from the Programming Chart, beginning on page 253. Scan Save to save the setting. Default $=3$ seconds.

Bluetooth/ISM Network Activity Examples

Default values

When the 8680i goes out of range, the 8680i repeatedly attempts to connect to the host. Each attempt consists of approximately 5 seconds of active time followed by 3 seconds of idle time. After one hour, the 8680i powers off and data is lost.

Maximum Link Attempts set to 15 Other values at default setting

When the 8680i goes out of range, 15 attempts are made to link to the host. Each attempt consists of approximately 5 seconds of active time followed by 3 seconds of idle time. After 15 cycles ($8 * 15=120$), or about 2 minutes, the 8680 i stops trying to connect to the host. After one hour, the 8680i powers off and data is lost.

Auto Reconnect Mode set to 0
 Maximum Link Attempts set to 15
 Other values at default setting

When the 8680i goes out of range, no action is taken to relink. When the trigger is pressed, 15 attempts are made to link to the host. Each attempt consists of approximately 5 seconds of active time followed by 3 seconds of idle time. After 15 cycles ($8 * 15=120$), or about 2 minutes, the 8680 i stops trying to connect to the host. After one hour, the 8680i powers off and data is lost. Refer to Auto Reconnect Mode, page 38, to review other events that can start the relink process.

Auto Reconnect Mode set to 1

Maximum Link Attempts set to 0
Relink Time-Out set to $\mathbf{1 0}$
Scanner Power Time-Out Timer set to 1800

Note: See Scanner Power Time-Out Timer on page 2-43.

The 8680i attempts to connect to the host every 15 seconds, measured from one attempt start to the next attempt start. After one half hour, the 8680i powers off.

Communication Between the 8680 i and the Host

When data is scanned, the data is sent to the host system. The 8680i provides immediate feedback in the form of a "good read" indication on the screen, an audible beep, and a vibration. This indicates only that the bar code has been scanned correctly.

RF (Radio Frequency) Operation

The wireless system uses a two-way Bluetooth radio utilizing adaptive frequency hopping (AFH) to transmit and receive data between the 8680i and the host. Designed for point-to-point and multiple point-to-single-point applications, the radio operates using a license-free ISM band, which sends relatively small data packets at a fast data rate over a radio signal with randomly changing frequencies. This makes the wireless system highly responsive to a wide variety of data collection applications and resistant to noisy RF environments. The communication range between the 8680i and host, depending on the environment, is 328 feet (100 m). See Flexible Power Management, page 44, for information about controlling this range.

System Conditions

The components of the wireless system interact in specific ways as you move the 8680 i out of range, bring the 8680 i back in range, or swap 8680 is between two hosts. The following information explains the wireless system operating conditions.

8680i Is Out of Range

The 8680i is in communication with its host, even when it is not transmitting bar code data. Whenever the 8680i can't communicate with the host for a few seconds, it is out of range. If the 8680 i is out of range and you scan a bar code, the 8680 i issues an error tone indicating that there was no communication with the host. Refer to Out-of-Range Alarm, page 42 and Auto Reconnect Mode, page 38.

8680i Is Moved Back Into Range

The 8680i relinks if the 8680i or the host have been reset, or the 8680i comes back into range. If the 8680i relinks, you will hear a single chirp when the relinking process (uploading of the parameter table) is complete. Refer to Out-of-Range Alarm on page 42 and Auto Reconnect Mode, page 38 for further information.

Reset Scanner

Scanning this bar code reboots the 8680i and causes it to relink with the host.

Scanner Report

Scan the bar code below to generate a report for the connected 8680is. The report indicates the port, 8680i name, and address. To assign a name to your 8680i, refer to Device Name, page 51.

Scanner Report

Scanner Address

Scan the bar code below to determine the address of the 8680i you are using.

Unlink a Scanner

If a host has an 8680 linked to it, that 8680 i must be unlinked before a new 8680 i can be linked. Once the previous 8680 is unlinked, it no longer communicates with the host. To unlink the 8680i from a host, scan the Unlink Scanner bar code below.

Unlink Scanner

Override Locked Scanner

If you need to replace a broken or lost 8680 i that is linked to a host, scan the Override Locked Scanner bar code below with a new 8680i and pair that 8680i with the host. The locked link is overridden; the broken or lost 8680 i's link with the host is removed, and the new 8680 is linked.

Override Locked Scanner
(Single Scanner)

Out-of-Range Alarm

If your 8680 i is out range of the host, an alarm sounds from the 8680 i . The alarm stops when the 8680i is moved closer to the host, when the host links to another 8680i, or when the alarm duration expires. To set the alarm duration, scan the bar code below and then set the time-out duration (from 0-3000 seconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default = 0 sec (no alarm).

Scanner Alarm Duration

Note: If you are out of range when you scan a bar code, you will receive an error tone even if you do not have the alarm set because the data could not be sent to the host.

Alarm Sound Type

Change the alarm type by scanning the following bar code and then scanning a digit (0-7) bar code and the Save bar code on the Programming Chart, beginning on page 253. Default $=0$.

The sounds are as follows:

Setting	Sound
0	3 long beeps, medium pitch
1	3 long beeps, high pitch
2	4 short beeps, medium pitch
3	4 short beeps, high pitch
4	single chirps, medium pitch
5	2 chirps, then 1 chirp, medium pitch
6	single chirps, high pitch
7	2 chirps, then 1 chirp, high pitch

Scanner Power Time-Out Timer

When there is no activity within a specified time period, the 8680i enters low power mode. Scan the appropriate power time-out bar code to change the time-out duration (in seconds).

Note: Scanning zero (0) is the equivalent of setting no time-out.

If there are no trigger presses during the timer interval, the 8680 i goes into power down mode. Whenever the trigger is pressed, the timer is reset. The 8680i does not go into power down mode when the battery is charging. Default = 3600 seconds.

Note: When the 8680i is in power down mode, press the trigger to power the unit back up. There is a set of power up beeps and a delay of up to a few seconds for the radio to join. The 8680i is then ready to use.

Flexible Power Management

If you are experiencing network performance issues and suspect the 8680 i is interfering with other devices, you can turn down the power output of the 8680i. This reduces the range between the 8680i and a host as shown in the following illustration:

Scan one of the bar codes below to set the 8680i's power output to Full Power (100\%), Medium Power (35\%), Medium Low Power (5\%), or Low Power (1\%). Default = Full Power.

Medium Low Power

Batch Mode

Batch mode is used to store bar code data when a scanner is out of range of its base or Access Point, or when performing inventory. The data is transmitted to the base or Access Point once the scanner is back in range or when the records are manually transmitted.

Automatic Batch Mode stores bar code data when the scanner is out of range of the base or Access Point. The data is automatically transmitted to the base or Access Point once the scanner is back in range. When the scanner's buffer space is full, any bar codes scanned generate an error tone. In order to scan bar codes again, the scanner must be moved back into range of the base or Access Point so data can be transmitted.

Inventory Batch Mode stores bar code data, whether or not you are in range of the base or Access Point. To transmit the stored data to the base or Access Point, either place the scanner in the base, or scan Transmit Inventory Records (page 50). When the scanner's buffer space is full, any bar codes scanned generate an error tone. In order to scan bar codes again, the data must be transmitted to the base or Access Point. Once the data is transmitted, it is cleared in the scanner.

Persistent Batch Mode is the same as Inventory Batch Mode, except that once the data is transmitted to the base or Access Point, it is retained in the scanner. If you want to transmit more than once, you can do so using this mode. In order to clear the scanner's buffer, you must scan Clear All Codes (see page 50).

* Batch Mode Off

BATENA3.
Persistent Batch Mode

Batch Mode Beep

When scanning in Inventory Batch Mode (page 46), the scanner beeps every time a bar code is scanned. When Batch Mode Beep is On, you will also hear a click when each bar code is sent to the host. If you do not want to hear these clicks, scan Batch Mode Beep Off. Default = Batch Mode Beep On.

BATBEP0.
Batch Mode Beep Off

* Batch Mode Beep On

Batch Mode Storage

When a scanner is storing data during a Batch Mode process, you can select whether the data is stored in Flash memory or in RAM.

Flash Storage: The scanner writes any untransmitted data to flash memory prior to powering down. The data will still be there when the scanner powers back up. However, the scanner will power down, even with untransmitted data, if it reaches a power down timeout or if the battery power is very low.

RAM Storage: The scanner will not power down while it contains data that has not been transmitted to the base or Access Point, even if it reaches a power down timeout. However, if the scanner runs out of power, it will power down and the data will be lost.

Default $=$ Flash Storage.

* Flash Storage

RAM Storage

Batch Mode Quantity

When in Batch Mode, you may wish to transmit the number of multiple bar codes scanned, rather than a single bar code multiple times. For example, if you scan three bar codes called XYZ with Batch Mode Quantity Off, when you transmit your data it will appear as XYZ three times. Using Batch Mode Quantity On and the Quantity Codes (page 48), you could output your data as "XYZ, 00003" instead.

Note: If you wish to format your output, for example, place a CR or tab between the bar code data and the quantity, refer to Data Format beginning on page 87.

Default = Batch Mode Quantity Off.

* Batch Mode Quantity Off

Batch Mode Quantity On

Enter Quantities

Quantity Codes (page 48) allow you to enter a quantity for the last item scanned, up to 9999 (default =1). Quantity digits are shifted from right to left, so if a fifth digit is scanned, the first digit scanned is discarded and the second, third and fourth digits are moved to the left to accommodate the new digit.

For example, if the Quantity 5 bar code is scanned after the quantity has been set to 1234 , then the 1 is dropped, the quantity will be 2345 .

Example: Add a quantity of 5 for the last item scanned.

1. Scan the item's bar code.
2. Scan the quantity $\mathbf{5}$ bar code.

Example: Add a quantity of 1,500 for the last item scanned.

1. Scan the item's bar code.
2. Scan the quantity 1 bar code.
3. Scan the quantity $\mathbf{5}$ bar code.
4. Scan the quantity \mathbf{O} bar code.
5. Scan the quantity \mathbf{O} bar code.

Example: Change a quantity of 103 to 10.
To correct an incorrect quantity, scan the quantity O bar code to replace the incorrect digits, then scan the correct quantity bar codes.

1. Scan the quantity \mathbf{O} bar code to change the quantity to 1030 .
2. Scan the quantity \mathbf{O} bar code to change the quantity to 0300 .
3. Scan the quantity $\mathbf{1}$ bar code to change the quantity to 3001 .
4. Scan the quantity $\mathbf{0}$ bar code to change the quantity to 0010 .

Default $=1$.

2

Quantity Codes (Continued)

9

Batch Mode Output Order

When batch data is transmitted, select whether you want that data sent as FIFO (first-in first-out), or LIFO (last-in first-out). Default = Batch Mode FIFO.

* Batch Mode FIFO

Total Records

If you wish to output the total number of bar codes scanned when in Batch Mode, scan Total Records.

BATNRC.
Total Records

Delete Last Code

If you want to delete the last bar code scanned when in Batch Mode, scan Delete Last Code.

Clear All Codes

If you want to clear the scanner's buffer of all data accumulated in Batch Mode, scan Clear All Codes.

Clear All Codes

Transmit Records to Host

If you are operating in Inventory Batch Mode (see Inventory Batch Mode on page 46), you must scan the following bar code to transmit all the stored data to the host system.

Transmit Inventory Records

Batch Mode Transmit Delay

Sometimes when accumulated scans are sent to the host system, the transmission of those scans is too fast for the application to process. To program a transmit delay between accumulated scans, scan one of the following delays. Default = Off.

Note: In most cases, a short (250 ms (milliseconds)) delay is ideal, however, longer delays may be programmed. Contact Technical Support (page ix) for additional information.

* Batch Mode Transmit Delay Off (No Delay)

Batch Mode Transmit Delay Short ($\mathbf{2 5 0} \mathbf{~ m s) ~}$

Batch Mode Transmit Delay Medium
(500 ms)

Batch Mode Transmit Delay Long (1000 ms)

Device Name

You may assign a name to each 8680i you are using for identification purposes. For example, you may want to have a unique identifier for an 8680i that is receiving specific commands sent from the host.

The default name is in the format "Honeywell-8680i-SN-\#\#\#\#\#\#\#\#\#\#\#\# (12 digit serial number)". If you have more than one 8680 i linked to a host and they all have the same name, the first 8680 i linked to the host receives commands. When renaming a series of 8680is with identical names, unlink all except one of the 8680is from the host.

Perform the rename operation using either the bar codes on page 52, or by sending the serial command :DeviceName:BT_NAMNewName. where DeviceName is the current name of the 8680i, and NewName is the new name for the 8680i. If you wish to change the names of additional 8680is, link them one at a time and repeat the :DeviceName:BT_NAMNewName. command for each 8680i.

To rename 8680is with sequential numeric names, scan the bar codes below. Scan the Reset code after each name change and wait for the 8680i to relink to the host before scanning a bar code to rename the next 8680i.

Reset
You may also scan the Scanner Name bar code below and scan a number for the 8680i name. For example, if you wanted to name the linked 8680i "312," you would scan the bar code below, scan the 3, 1, and $\mathbf{2}$ bar codes on the Programming Chart, beginning on page 253, then scan Save. Scan the Reset bar code and wait for the 8680i to relink to the host.

Scanner Name

Host Acknowledgment

Some applications require that the host terminal (or server) validate incoming bar code data (database look-up) and provide acknowledgment to the scanner whether or not to proceed. In Host ACK Mode, the scanner waits for this acknowledgment after each scan. Visual and audible acknowledgments provide valuable feedback to the scan operator. The Host ACK functionality is controlled via a number of pre-defined escape commands that are sent to the scanner to make it behave in different ways.

Note: System performance degrades when using Host ACK at rates lower than 9600 baud.
The following criteria must be met for the Host ACK to work correctly:

- The cordless system must be configured for Host Port RS232 (terminal ID = 000) or USB COM Emulation (terminal ID = 130).
- RTS/CTS is defaulted off. You must enable it if the host system requires it.
- Host ACK must be set to On (page 53).
- A comma must be used as a terminator.
- The host terminal software must be capable of interpreting the bar code data, make decisions based on the data content, and send out appropriate escape commands to the scanner.

The commands to which the scanner responds are listed on page 54. The [ESC] is a 1B in hex. A typical command string is \mathbf{y} [ESC] x, where " y " is the application work group number, "[ESC] x " is the escape command, and the comma is the terminator, which is required. (When " y " is not specified, the command is sent to the default Application Work Group 0.)

Example: Commands may be strung together to create custom response sequences. An example of a command string is listed below.
[ESC]4,[ESC]5,[ESC]6,

The above example will make a scanner beep low, then medium, then high.
Example: A good read beep is required for any item on file, but a razz or error tone is required if the item is not on file. In this case,
[ESC]7, is sent from the host to the scanner for an on-file product
[ESC]8,[ESC]8, is sent from the host to the scanner for a not-on-file product When a bar code is scanned, the scanner enters a timeout period until either the host ACK sequence is received, or the timeout expires (in 10 seconds, by default).

Once Host ACK is enabled, the system works as follows when a bar code is scanned:

- The scanner reads the code and sends data to the base or Access Point to transmit to the host system. No audible or visual indication is emitted until the scanner receives an escape command. The scanner read illumination goes out when there's a successful read.
- Scanner operation is suspended until 1) a valid escape string is received from the host system or 2) the scanner times out.
- Once condition 1 or 2 above has been met, the scanner is ready to scan again, and the process repeats.

A time-out occurs if the scanner does not receive a valid escape command within 10 seconds. A time-out is indicated by an error tone. If a time-out occurs, the operator should check the host system to understand why a response to the scanner was not received.

Host ACK On/Off

Host ACK On

Host ACK Timeout

You can set a timeout for the length of time the scanner waits for a valid escape command when using Host Acknowledgment Mode. Set the length (in seconds) for a timeout by scanning the following bar code, then setting the timeout (from 1-90 seconds) by scanning digits from the Programming Chart, beginning on page 253, then Save. Default = 10 .

Host ACK Responses

Command	Action
$[E S C]$ a,	Double beeps to indicate a successful menu change was made.
$[E S C]$ b,	Razz or error tone to indicate a menu change was unsuccessful.
$[E S C] 1$,	The green LED illuminates for 135 milliseconds followed by a pause.
$[E S C] 2$,	The green LED illuminates for 2 seconds followed by a pause.
$[E S C] 3$,	The green LED illuminates for 5 seconds followed by a pause.
$[E S C] 4$,	Emits a beep at a low pitch.
$[E S C] 5$,	Emits a beep at a medium pitch.
$[E S C] 6$,	Beeps to indicate a successful decode and communication to host.
$[E S C] 7$,	Razz or error tone to indicate a decode/communication to host was unsuccessful.
$[E S C] 8,[E S C] 8$,	

INPUT/OUTPUT SETTINGS

Power Up Beeper

The 8680 i can be programmed to beep when it's powered up. Scan the Off bar code if you don't want a power up beep. Default = Power Up Beeper On - Scanner.

Power Up Beeper Off -
Scanner

Beep on BEL Character

You may wish to force the 8680i to beep upon a command sent from the host. If you scan the Beep on BEL On bar code below, the 8680i beeps every time a BEL character is received from the host. Default = Beep on BEL Off.

*Beep on BEL Off

Trigger Click

To hear an audible click every time the 8680i trigger is pressed, scan the Trigger Click On bar code below. Scan the Trigger Click Off code if you don't wish to hear the click. (This feature has no effect on serial or automatic triggering.) Default = Trigger Click Off.

*Trigger Click Off

BEPTRG1
Trigger Click On

Good Read and Error Indicators

Beeper - Good Read

The beeper may be programmed On or Off in response to a good read. Turning this option off only turns off the beeper response to a good read indication. All error and menu beeps are still audible. Default = Beeper - Good Read On.

Beeper - Good Read Off

* Beeper - Good Read On

Beeper Volume - Good Read

The beeper volume codes modify the volume of the beep the 8680i emits on a good read. Default $=$ High.

Low

Beeper Pitch - Good Read

The beeper pitch codes modify the pitch (frequency) of the beep the 8680i emits on a good read. Default = Medium.

(2700 Hz)

High (4200 Hz)

Vibrate - Good Read

The 8680i vibrates once when a bar code is successfully read, and twice when a programming bar code is successfully read. When a programming bar code is unsuccessful, the 8680i emits one long vibration (2 times the Vibrate Duration length). Scan Vibrate - Good Read Off to keep the 8680i from vibrating. Default = Vibrate - Good Read On.

* Vibrate- Good Read On

If you want to set the length for the good read vibration, scan the bar code below, then set the duration (from 100-2,000 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=300 \mathrm{~ms}$.

Beeper Pitch - Error

The beeper pitch codes modify the pitch (frequency) of the sound the 8680i emits when there is a bad read or error. Default = Razz.

Beeper Duration - Good Read

The beeper duration codes modify the length of the beep the 8680i emits on a good read. Default = Normal.

LED - Good Read

The green LED checkmark can be programmed On or Off in response to a good read. Default = On.

LED - Good Read On

Number of Beeps - Good Read

The number of beeps of a good read can be programmed from 1-9. The same number of beeps are applied to the beeper and LED in response to a good read. For example, if you program this option to have five beeps, there will be five beeps and five LED flashes in response to a good read. The beeps and LED flashes are in sync with one another. To change the number of beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code from the Programming Chart on page 253. Default $=1$.

Number of Good Read Beeps/LED Flashes

Number of Beeps - Error

The number of beeps and LED flashes emitted by the 8680i for a bad read or error can be programmed from 1-9. For example, if you program this option to have five error beeps, there will be five error beeps and five LED flashes in response to an error. To change the number of error beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code from the Programming Chart on page 253. Default = 1 .

BEPERR.
Number of Error Beeps/LED Flashes

Good Read Delay

This sets the minimum amount of time before the 8680i can read another bar code. Default $=0 \mathrm{~ms}$ (No Delay).

Long Delay ($\mathbf{1 , 5 0 0} \mathbf{~ m s}$)

User-Specified Good Read Delay

If you want to set your own length for the good read delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253.

User-Specified Good Read Delay

Manual Trigger Modes

When in manual trigger mode, the 8680i scans until a bar code is read, or until the trigger is released. Two modes are available, Normal and Enhanced. Normal mode offers good scan speed and the longest working ranges (depth of field). Enhanced mode gives you the highest possible scan speed but slightly less range than Normal mode. Enhanced mode is best used when you require a very fast scan speed and don't require a long working range. Default = Manual Trigger-Normal.

* Manual Trigger - Normal

Manual Trigger - Enhanced

Serial Trigger Mode

You can activate the 8680i either by pressing the trigger, or using a serial trigger command (see Trigger Commands on page 196). You must be in a serial interface mode in order to use serial triggering. Refer to RS232 Serial Port (page 3-38) or USB Serial (page 3-41) for further information. When in serial mode, the 8680i scans until a bar code has been read or until the deactivate command is sent. The 8680i can also be set to turn itself off after a specified time has elapsed (see Read Time-Out, which follows).

Read Time-Out

Use this selection to set a time-out (in milliseconds) of the 8680i's trigger when using serial commands to trigger the 8680i. Once the 8680i has timed out, you can activate the 8680 i either by pressing the trigger or using a serial trigger command. After scanning the Read Time-Out bar code, set the time-out duration (from 0300,000 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=30,000 \mathrm{~ms}$.

Object Detection Mode

Object Detection Mode uses an infrared (IR) beam to detect when an object is in the scanner's field of view. When an object is detected, the scanner attempts to scan the bar code. Scan the Short Range code for a target that's approximately 6 inches (16 cm) away, or the Long Range code for a target that's approximately 13 inches (32cm) away. Default = Object Detection - Long Range.

Object Detection Deactivation

If desired, you can turn off Object Detection with the press of a button. This maximizes battery life and prevents unintentional scans. Scan one of the timeouts below to set the length of time the user must press the right button in order to turn off the Object Detection feature. Default = Off.

AOSTIM10.
Quick Press

 AOSTIM2000.
 2 Second Press

Object Detection Trigger Hold

As you move in and out of the range of objects, you may want to keep the Object Detection triggering on rather than reverting to triggered scanning. To set a 1 second trigger hold, scan the $\mathbf{1}$ Second Hold bar code below. Default = Off.

Poor Quality Codes

Poor Quality 1D Codes

This setting improves the 8680i's ability to read damaged or badly printed linear bar codes. When Poor Quality 1D Reading On is scanned, poor quality linear bar code reading is improved, but the 8680i's snappiness is decreased, making it less aggressive when reading good quality bar codes. This setting does not affect 2D bar code reading. Default = Poor Quality 1D Reading Off.

Poor Quality 1D Reading On

* Poor Quality 1D Reading Off

Poor Quality PDF Codes

This setting improves the 8680i's ability to read damaged or badly printed PDF codes by combining information from multiple images. When Poor Quality PDF On is scanned, poor quality PDF code reading is improved, but the 8680i's snappiness is decreased, making it less aggressive when reading good quality bar codes. This setting does not affect 1D bar code reading. Default = Poor Quality PDF Reading Off.

Poor Quality PDF Reading On

* Poor Quality PDF Reading off

Illumination Lights

If you want the illumination lights on while reading a bar code, scan the Lights On bar code, below. However, if you want to turn just the lights off, scan the Lights Off bar code. Default = Lights On.

Note: This setting does not affect the aimer light. The aiming light can be set using Aimer Mode (page 65).

Aimer Delay

The aimer delay allows a delay time for the operator to aim the 8680i before the image is taken. Use these codes to set the time between when the trigger is pressed and when the image is taken. During the delay time, the aiming light appears, but the LEDs won't turn on until the delay time is over. Default = Off.

User-Specified Aimer Delay

If you want to set your own length for the duration of the delay, scan the bar code below, then set the time-out (from 0-4,000 ms) by scanning digits, then the Save bar code from the Programming Chart on page 253.

Aimer Mode

This feature allows you to turn the aimer on and off. When the Interlaced bar code is scanned, the aimer is interlaced with the illumination LEDs. Default = Interlaced

Centering

Use Centering to narrow the 8680i's field of view to make sure that it reads only those bar codes you intend to read. For instance, if multiple codes are placed closely together, centering insures that only the desired codes are read. (Centering can be used in conjunction with Aimer Delay, page 64, for the most error-free operation in applications where multiple codes are spaced closely together. Using the Aimer Delay and Centering features, the 8680i can emulate the operation of older systems, such as linear laser bar code scanners.)

Single Code Centering

Scan Single Code Centering to target the bar code closest to the center of the image. Singling out a bar code in this manner increases scanning accuracy when there are multiple bar codes close together.

Custom Centering Settings

Use the following settings to customize your centering window. If a bar code is not touched by a predefined window, it will not be decoded or output by the 8680i. If centering is turned on by scanning Centering On, the 8680i only reads codes that pass through the centering window you specify using the Top of Centering Window, Bottom of Centering Window, Left, and Right of Centering Window bar codes.

In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window by scanning digits, then the Save bar code from the Programming Chart on page 253. Default Centering $=40 \%$ for Top and Left, 60\% for Bottom and Right.

Top of Centering Window

Bottom of Centering Window

Keyboard Wedge Modifiers

ALT Mode

If your bar code contains special characters from the extended ASCII chart, for example, an e with an accent grave (è), you will use ALT Mode. (See Lower ASCII Reference Table.)

Note: Scan the ALT mode bar code after scanning the appropriate Keyboard Country code.
If your keystrokes require the ALT key and 4 characters, scan the 4 Characters bar code. The data is then output with the special character(s). Default = Off.

4 Characters

Keyboard Modifiers

This modifies special keyboard features, such as CTRL+ ASCII codes and Turbo Mode.

Control + X (Control + ASCII) Mode On: The scanner sends key combinations for ASCII control characters for values 00-1F. Windows is the preferred mode. All keyboard country codes are supported. DOS mode is a legacy mode, and it does not support all keyboard country codes. New users should use the Windows mode. Refer to ASCII Conversion Chart (Code Page 1252) on page 242 for CTRL+ X Values.

Windows Mode Prefix/Suffix Off: The scanner sends key combinations for ASCII control characters for values 00-1F, but it does not translate prefix or suffix information.

Default = Control + X Mode Off.

* Control + X Mode Off

Preferred Symbology

The 8680i can be programmed to specify one symbology as a higher priority over other symbologies in situations where both bar code symbologies appear on the same label, but the lower priority symbology cannot be disabled.

For example, you may be using the 8680i in a retail setting to read U.P.C. symbols, but have occasional need to read a code on a drivers license. Since some licenses have a Code 39 symbol as well as the PDF417 symbol, you can use Preferred Symbology to specify that the PDF417 symbol be read instead of the Code 39.

Preferred Symbology classifies each symbology as high priority, low priority, or as an unspecified type. When a low priority symbology is presented, the 8680i ignores it for a set period of time (see Preferred Symbology Time-out on page 69) while it searches for the high priority symbology. If a high priority symbology is located during this period, then that data is read immediately.

If the time-out period expires before a high priority symbology is read, the 8680 i reads any bar code in its view (low priority or unspecified). If there is no bar code in the 8680i's view after the time-out period expires, then no data is reported.

Note: A low priority symbol must be centered on the aiming pattern to be read.
Scan a bar code below to enable or disable Preferred Symbology. Default = Preferred Symbology Off.

Preferred Symbology On

* Preferred Symbology Off

High Priority Symbology

To specify the high priority symbology, scan the High Priority Symbology bar code below. On the Symbology Charts on page 239, find the symbology you want to set as high priority. Locate the hex value for that symbology and scan the 2 digit hex value by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=$ None.

Low Priority Symbology

To specify the low priority symbology, scan the Low Priority Symbology bar code below. On the Symbology Charts on page 239, find the symbology you want to set as low priority. Locate the hex value for that symbology and scan the 2 digit hex value from the Programming Chart on page 253.

If you want to set additional low priority symbologies, scan FF, then scan the 2 digit hex value from the Programming Chart for the next symbology. You can program up to 5 low priority symbologies. Scan Save to save your selection. Default = None.

Preferred Symbology Time-out

Once you have enabled Preferred Symbology and entered the high and low priority symbologies, you must set the time-out period. This is the period of time the 8680i searches for a high priority bar code after a low priority bar code has been encountered. Scan the bar code below, then set the delay (from 1-3,000 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500 \mathrm{~ms}$.

Preferred Symbology Time-out

Preferred Symbology Default

Scan the bar code below to set all Preferred Symbology entries to their default values.

Preferred Symbology Default

Output Sequence Overview

Output Sequence Editor

This programming selection allows you to program the 8680i to output data (when scanning more than one symbol) in whatever order your application requires, regardless of the order in which the bar codes are scanned. You can define up to 15 bar codes in an output sequence.

Note: To make Output Sequence Editor selections, you'll need to know the code I.D., code length, and character match(es) your application requires. Use the alphanumeric symbols in the Programming Chart (page 253) to enter these options. You must hold the trigger while reading each bar code in the sequence.

To Add an Output Sequence

An output sequence is created using a string of serial commands that is sent to the 8680i. This string is most easily sent to the 8680i using the EZConfig software tool (see EZConfig-Scanning Introduction on page 191). You can also accomplish this by scanning alphanumeric bar codes (see the Programming Chart, beginning on page 253).

1. If you are using bar codes to create your output sequence, scan the Enter Sequence symbol (see Require Output Sequence, page 76).
2. Code I.D.

On the Symbology Charts on page 239, find the symbology to which you want to apply the output sequence format. Locate the hex value for that symbology and scan the 2 digit hex value from the Programming Chart, beginning on page 253.
3. Length

Specify what length (up to 9999 characters) of data output is acceptable for this symbology. Make a note of the length. If you are using bar codes to create your output sequence, scan the four digit data length from the Programming Chart, beginning on page 253. (Note: 50 characters is entered as 0050.9999 is a universal number, indicating all lengths.) When calculating the length, you must count any programmed prefixes, suffixes, or formatted characters as part of the length (unless using 9999).

4. Character Match Sequences

On the ASCII Conversion Chart (Code Page 1252), page 242, find the hex value that represents the character(s) you want to match. Make a note of the hex value for the character(s). If you are using bar codes to create your output sequence, use the Programming Chart (page 253) to read the alphanumeric combination that represents the ASCII characters. (99 is the Universal number, indicating all characters.)
5. End Output Sequence Editor

Scan F F to enter an Output Sequence for an additional symbology, or Save to save your entries.

Other Programming Selections

If you are creating an output sequence using bar codes, scan Discard (page 253) to exit without saving any output sequence changes.

Output Sequence Example

SEQBLK Sequence editor start command.
SEQPRE Add prefix to complete output sequences.
SEQSUF Add suffix to complete output sequences.
SEQSEP Add separators to complete output sequences.
SEQTTS1 Transmit partial sequence.
SEQIPR Add prefix to partial output sequences.
SEQISU Add suffix to partial output sequences.
SEQISE Add separators to partial output sequences.
TRGSTO Timeout for partial output sequences.
FF Termination string.
Examples outlining how to use these commands are shown below.

Output Sequence Example 1 - Three Symbologies

In this example, you are scanning PDF417, Code 128, and Code 39 bar codes, but you want the 8680 i to output Code 39 first, Code 128 second, and PDF417 third.

Set up the sequence editor with the following command line:

SEQBLK	sequence editor start command
62	code identifier for Code 39
9999	code length that must match for Code 39, $9999=$ all lengths
43	start character match for Code 39, 43h = "C"
FF	termination string for first code
6A	code identifier for Code 128
9999	code length that must match for Code 128, $9999=$ all lengths
54	start character match for Code 128, 54h = "T"
FF	termination string for first code
72	code identifier for PDF417
9999	code length that must match for PDF417, $9999=$ all lengths
4D	start character match for PDF417, 4Dh = "M"
FF	termination string for third code

The whole command line would look like this:

SEQBLK62999943FF6A999954FF7299994DFF

The data is output as:

CODE39SMPLTSTMSGCODE128MSGPDF417

See the next example to further refine this output.

Output Sequence Example 2 - Three Symbologies with <> Separators

In this example, you are scanning the same three bar codes, but you want <> brackets and a carriage return and line feed to separate your output.

TSTMSGCODE128

The sequence editor would use the same command line as shown in Output Sequence Example (page 71):

SEQBLK
62
9999

43
FF
6A
9999

54
FF
72
9999

4D
FF
sequence editor start command
code identifier for Code 39
code length that must match for Code 39, $9999=$ all lengths
start character match for Code 39, 43h = "C"
termination string for first code
code identifier for Code 128
code length that must match for Code 128, $9999=$ all lengths
start character match for Code 128, 54h = "T"
termination string for first code
code identifier for PDF417
code length that must match for PDF417, $9999=$ all lengths
start character match for PDF417, 4Dh = " M "
termination string for third code

But you would add your <> separators for each sequence:
SEQSEP99 separator for each sequence, 99 = all symbologies
3C left bracket (<)

3E right bracket (>)
And add the carriage return and line feed as a suffix:
SEQSUF99 separator for suffixes, 99 = all symbologies
OD
carriage return
OA
line feed
The whole command line would look like this:
SEQBLK62999943FF6A999954FF7299994DFFSEQSEP993C3ESEQSUF990D0 A

The data is output as:
<CODE39SMPL>
<TSTMSGCODE128>
<MSGPDF417>

Enter Output Sequence

If you are using bar codes to create your output sequence, scan Enter Output Sequence to begin scanning your string.

Enter Output Sequence

Partial Sequence

If an output sequence operation is terminated before all your output sequence criteria are met, the bar code data acquired to that point is a "partial sequence." You can define how partial sequences are output using the same types of command strings you used to create output sequences.

Partial Sequence Example - Three Symbologies with <> Separators, but with a Damaged Code

In this example, you are scanning PDF417, Code 128, and Code 39 bar codes, and you want the 8680 i to output Code 39 first, Code 128 second, and PDF417 third, in brackets, as shown below, but the Code 39 bar code has been damaged and cannot be output.

You would use the same command line as shown in Output Sequence Example 2 Three Symbologies with <> Separators (page 72):

SEQBLK	sequence editor start command
$\mathbf{6 2}$	code identifier for Code 39 code length that must match for Code 39, $9999=$ all lengths
$\mathbf{9 9 9 9}$	start character match for Code $39,43 \mathrm{~h}=$ "C"
$\mathbf{4 3}$	termination string for first code
FF	code identifier for Code 128 6A
$\mathbf{9 9 9 9}$	code length that must match for Code $128,9999=$ all lengths

54	start character match for Code $128,54 \mathrm{~h}=$ "T"
FF	termination string for first code
$\mathbf{7 2}$	code identifier for PDF417
$\mathbf{9 9 9 9}$	code length that must match for PDF417, lengths
4D	start character match for PDF417, 4Dh = "M" all
FF	termination string for third code
SEQSEP99	separator for each sequence, $99=$ all symbologies
3C	left bracket (<)
3E	right bracket (>)
SEQSUF99	separator for suffixes, $99=$ all symbologies
OD	carriage return
OA	line feed

And you would add >PARTIAL< as the prefix to note the partial sequence:

SEQTTS1	transmit partial sequence
SEQISU99	add partial sequence prefix, $99=$ all symbologies
3E	right bracket (>)
$\mathbf{5 0}$	P
41	A
52	R
54	T
49	I
41	A
4C	L
3C	left bracket (<)

The whole command line would look like this:
SEQBLK62999943FF6A999954FF7299994DFFSEQSEP993C3ESEQSUF990D0 ASEQTTS1SEQISU993E5041525449414C3C

The data is output as:

```
>PARTIAL<
<TSTMSGCODE128>
<MSGPDF417>
```


Discard Partial Output Sequence

If you want to discard partial sequences when the output sequence operation is terminated before completion, scan Discard Partial Sequence.

Default Output Sequence

Default Sequence programs the 8680 i to all universal values. Be certain you want to delete or clear all formats before you read the Default Sequence symbol.

Require Output Sequence

When an output sequence is Required, all output data must conform to an edited sequence or the 8680i does not transmit the output data to the host device. When it's On/Not Required, the 8680i attempts to get the output data to conform to an edited sequence but, if it cannot, the 8680i transmits all output data to the host device as is, or formatted according to the partial sequence output format (see Partial Sequence on page 74).

When the output sequence is Off, the bar code data is output to the host as the 8680i decodes it. Default = Off.

Note: This selection is unavailable when the Multiple Symbols Selection is turned on.

Good Read Tone - Output Sequences

The 8680i may be programmed to either beep or click in response to a good read of each bar code in an output sequence, or to emit a beep or error tone for a partial sequence. Default = Good Read Click - Each Code in Sequence and Error Tone Partial Sequence Output.

Code in Sequence

Good Read Beep - Partial
Sequence Output

* Error Tone - Partial Sequence Output

Multiple Symbols

When this programming selection is turned $\mathbf{O n}$, it allows you to read multiple symbols with a single press of the 8680i's trigger. If you press and hold the trigger, aiming the 8680i at a series of symbols, it reads unique symbols once, beeping and vibrating for each read. The 8680i attempts to find and decode new symbols as long as the trigger is pressed. When this programming selection is turned Off, the 8680i only reads the symbol closest to the aiming beam. Default = Off.

With No Read turned On, the 8680i notifies you if a code cannot be read. If using an EZConfig-Scanning Tool Scan Data Window (see page 191), an "NR" appears when a code cannot be read. When No Read is turned Off, the "NR" does not appear. Default = Off.

If you want a different notation than "NR," for example, "Error," or "Bad Code," you can edit the output message (see Data Format beginning on page 5-87). The hex code for the No Read symbol is 9C.

Video Reverse

Video Reverse is used to allow the 8680i to read bar codes that are inverted. The Video Reverse Off bar code below is an example of this type of bar code. Scan Video Reverse Only to read only inverted bar codes. Scan Video Reverse and Standard Bar Codes to read both types of codes. Default = Video Reverse Off.

Note: After scanning Video Reverse Only, menu bar codes cannot be read. You must scan Video Reverse Off or Video Reverse and Standard Bar Codes in order to read menu bar codes.

Note: Images downloaded from the unit are not reversed. This is a setting for decoding only.

||||||||||||||||||||||
 VIDREV0.

* Video Reverse Off

Working Orientation

Some bar codes are direction-sensitive. For example, KIX codes and OCR can misread when scanned sideways or upside down. Use the working orientation settings if your direction-sensitive codes are not usually presented upright to the 8680i. Default = Upright.

DATA EDIT

Prefix/Suffix Overview

When a bar code is scanned, additional information is sent to the host computer along with the bar code data. This group of bar code data and additional, user-defined data is called a "message string." The selections in this section are used to build the user-defined data into the message string.

Prefix and Suffix characters are data characters that can be sent before and after scanned data. You can specify if they should be sent with all symbologies, or only with specific symbologies. The following illustration shows the breakdown of a message string:

Points to Keep In Mind

- It is not necessary to build a message string. The selections in this chapter are only used if you wish to alter the default settings. Default prefix = None. Default suffix = None.
- A prefix or suffix may be added or cleared from one symbology or all symbologies.
- You can add any prefix or suffix from the ASCII Conversion Chart (Code Page 1252), beginning on page 242, plus Code I.D. and AIM I.D.
- You can string together several entries for several symbologies at one time.
- Enter prefixes and suffixes in the order in which you want them to appear on the output.
- When setting up for specific symbologies (as opposed to all symbologies), the specific symbology ID value counts as an added prefix or suffix character.
- The maximum size of a prefix or suffix configuration is 200 characters, which includes header information.

Add a Prefix or Suffix:

Step 1. Scan the Add Prefix or Add Suffix symbol (page 83).
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page 239) for the symbology to which you want to apply the prefix or suffix. For example, for Code 128, Code ID is " j " and Hex ID is " 6 A ".
Step 3. Scan the 2 hex by scanning digits from the Programming Chart on page 253, or scan 9, 9 for all symbologies.

To add the Code I.D., scan 5, C, 8, $\mathbf{0}$.
To add AIM I.D., scan 5, C, 8, 1 .
To add the serial number, scan 5, C, 8, 8.
To add a backslash (\backslash), scan 5, C, 5, C.
Note: To add a backslash () , you must scan 5C twice - once to create the leading backslash and then to create the backslash itself.

Step 4. Repeat Steps 2 and 3 for every prefix or suffix character.
Step 5. Scan Save to exit and save, or scan Discard to exit without saving.
Repeat the steps above to add a prefix or suffix for another symbology.

Example: Add a Tab Suffix to All Symbologies

Step 1. Scan Add Suffix.
Step 2. Scan 9, 9 from the Programming Chart, beginning on page 253 to apply this suffix to all symbologies.
Step 3. Scan 0,9 from the Programming Chart, beginning on page 253. This corresponds with the hex value for a horizontal tab, shown in the ASCII Conversion Chart (Code Page 1252), beginning on page 242.
Step 4. Scan Save to exit and save, or scan Discard to exit without saving.

Clear One or All Prefixes or Suffixes

You can clear a single prefix or suffix, or clear all prefixes/suffixes for a symbology. If you have been entering prefixes and suffixes for single symbologies, you can use Clear One Prefix (Suffix) to delete a specific character from a symbology. When you Clear All Prefixes (Suffixes), all the prefixes or suffixes for a symbology are deleted.

Step 1. Scan the Clear One Prefix or Clear One Suffix symbol.
Step 2. Determine the 2 digit hex value from the Symbology Chart (included in the Symbology Charts, beginning on page 239) for the symbology from which you want to clear the prefix or suffix.
Step 3. Scan the 2 digit hex value from the Programming Chart, beginning on page 253 , or scan 9,9 for all symbologies.

Your change is automatically saved.

Add a Carriage Return Suffix to All Symbologies

Scan the following bar code if you wish to add a carriage return suffix to all symbologies at once. This action first clears all current suffixes, then programs a carriage return suffix for all symbologies.

Prefix Selections

Suffix Selections

SUFBK2.
Add Suffix

SUFCL2.
Clear One Suffix

 SUFCA2.

Clear All Suffixes

Function Code Transmit

By default, all ASCII control characters are transmitted with bar code data. These non-printable characters are translated into predefined key strokes, or CTRL+X functions (see ASCII Conversion Chart (Code Page 1252), beginning on page 242). If these key strokes interfere with your host's software application, scan Disable to keep these ASCII control characters from being transmitted. Default = Enable.

Note: You can also use a custom data format (see Data Format, beginning on page 87) to translate these characters into a more meaningful output.

Intercharacter, Interfunction, and Intermessage Delays

Some terminals drop information (characters) if data comes through too quickly. Intercharacter, interfunction, and intermessage delays slow the transmission of data, increasing data integrity.

Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each character of scanned data. Scan the Intercharacter Delay bar code below, then scan the number of 5 ms delays, and the Save bar code from the Programming Chart, beginning on page 253.

To remove this delay, scan the Intercharacter Delay bar code, then set the number of delays to $\mathbf{0}$. Scan the Save bar code from the Programming Chart, beginning on page 253.

Note: Intercharacter delays are not supported in USB serial emulation.

User Specified Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed after the transmission of a particular character of scanned data. Scan the Delay Length bar code below, then scan the number of 5 ms delays, and the Save bar code from the Programming Chart, beginning on page 253.

Next, scan the Character to Trigger Delay bar code, then the 2-digit hex value for a printable character to trigger the delay (see Lower ASCII Reference Table, page 243.)

To remove this delay, scan the Delay Length bar code, and set the number of delays to 0. Scan the Save bar code from the Programming Chart, beginning on page 253.

Interfunction Delay

An interfunction delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each control character in the message string. Scan the Interfunction Delay bar code below, then scan the number of 5 ms delays, and the Save bar code from the Programming Chart, beginning on page 253.

To remove this delay, scan the Interfunction Delay bar code, then set the number of delays to $\mathbf{0}$. Scan the Save bar code from the Programming Chart, beginning on page 253.

Intermessage Delay

An intermessage delay of up to 5000 milliseconds (in 5 ms increments) may be placed between each scan transmission. Scan the Intermessage Delay bar code below, then scan the number of 5 ms delays, and the Save bar code from the Programming Chart, beginning on page 253.

To remove this delay, scan the Intermessage Delay bar code, then set the number of delays to $\mathbf{0}$. Scan the Save bar code from the Programming Chart, beginning on page 253.

DATA FORMAT

Data Format Editor Introduction

You may use the Data Format Editor to change the 8680i's output. For example, you can use the Data Format Editor to insert characters at certain points in bar code data as it is scanned. The selections in the following pages are used only if you wish to alter the output. Default Data Format setting = None.

Normally, when you scan a bar code, it is output automatically. However, when you create a format, you must use a "send" command (see Send Commands on page 90) within the format program to output data.

Multiple formats may be programmed into the 8680i. They are stacked in the order in which they are entered. However, the following list presents the order in which formats are applied:

1. Specific Terminal ID, Actual Code ID, Actual Length
2. Specific Terminal ID, Actual Code ID, Universal Length
3. Specific Terminal ID, Universal Code ID, Actual Length
4. Specific Terminal ID, Universal Code ID, Universal Length
5. Universal Terminal ID, Actual Code ID, Actual Length
6. Universal Terminal ID, Actual Code ID, Universal Length
7. Universal Terminal ID, Universal Code ID, Actual Length
8. Universal Terminal ID, Universal Code ID, Universal Length

The maximum size of a data format configuration is 2000 bytes, which includes header information.

If a bar code is read that fails the first data format, the next data format, if there is one, will be used on the bar code data. If there is no other data format, the raw data is output.

If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

Show Data Format

Scan the bar code below to show current data format settings.

Add a Data Format

Step 1. Scan the Enter Data Format symbol (page 89).
Step 2. Select Primary/Alternate Format
Determine if this will be your primary data format, or one of 3 alternate formats. This allows you to save a total of 4 different data formats. To program your primary format, scan $\mathbf{0}$ from the Programming Chart, beginning on page 253. If you are programming an alternate format, scan 1, 2, or 3, depending on which alternate format you are programming. (See "Primary/Alternate Data Formats" on page 105 for further information.)

Step 3. Terminal Type
Refer to Terminal ID Table (page 90) and locate the Terminal ID number for your PC. Scan three numeric bar codes from the Programming Chart, beginning on page 253 to program the 8680i for your terminal ID (you must enter 3 digits). For example, scan $\mathbf{0 0 3}$ for an AT wedge.

Note: 099 indicates all terminal types.
Step 4. Code I.D.
In the Symbology Charts, beginning on page 239, find the symbology to which you want to apply the data format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart, beginning on page 253.

If you wish to create a data format for all symbologies, with the exception of some specific symbologies, refer to B8 (page 103).

Note: 99 indicates all symbologies.
Step 5. Length
Specify what length (up to 9999 characters) of data are acceptable for this symbology. Scan the four digit data length from the Programming

Chart, beginning on page 253. For example, 50 characters is entered as 0050.

Note: 9999 indicates all lengths.
Step 6. Editor Commands
Refer to Data Format Editor Commands (page 90). Scan the symbols that represent the command you want to enter.

Step 7. Scan Save to save your data format, or Discard to exit without saving your changes.

Enter Data Format

Other Programming Selections

- Clear One Data Format

This deletes one data format for one symbology. If you are clearing the primary format, scan $\mathbf{0}$ from the Programming Chart, beginning on page 253. If you are clearing an alternate format, scan 1, 2, or 3, depending on the format you are clearing. Scan the Terminal Type and Code I.D. (see Symbology Charts on page 239), and the bar code data length for the specific data format that you want to delete. All other formats remain unaffected.

- Clear all Data Formats

This clears all data formats.

- Save

Exit and save your data format changes.

- Discard

Exit without saving any data format changes.

Clear One Data Format

Terminal ID Table

Terminal	Model(s)	Terminal ID
USB	PC keyboard (HID)	124
	Mac Keyboard	125
	PC Keyboard (Japanese)	134
	Serial (COM driver required)	130
	HID POS	131
Serial	USB SurePOS Handheld	128
	USB SurePOS Tabletop	129
	RS232 TTL	000
	RS232 True	000
	RS485 (IBM-HHBCR 1+2, 46xx)	051
	PS2 compatibles	003
	AT compatibles	002

Data Format Editor Commands

When working with the Data Format Editor, a virtual cursor is moved along your input data string. The following commands are used to both move this cursor to different positions, and to select, replace, and insert data into the final output.

Send Commands

Send all characters

F1 Include in the output message all of the characters from the input message, starting from current cursor position, followed by an insert character. Syntax = F1xx where xx stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Send a number of characters

F2 Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for "nn" characters or through the last character in the input message, followed by character "xx." Syntax $=F 2 n n x x$ where $n n$ stands for the numeric value (00-99) for the number of characters, and xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

F2 Example: Send a number of characters

Send the first 10 characters from the bar code above, followed by a carriage return. Command string: F2100D

F2 is the "Send a number of characters" command
10 is the number of characters to send
$O D$ is the hex value for a $C R$
The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0}$

F2 and F1 Example: Split characters into 2 lines

Send the first 10 characters from the bar code above, followed by a carriage return, followed by the rest of the characters.

Command string: F2100DF10D
F2 is the "Send a number of characters" command
10 is the number of characters to send for the first line
OD is the hex value for a CR
F1 is the "Send all characters" command
OD is the hex value for a $C R$
The data is output as:
1234567890
ABCDEFGHIJ
<CR>

Send all characters up to a particular character

F3 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search character "ss," followed by an insert character. The cursor is moved forward to the "ss" character. Syntax = F3ssxx where ss stands for the search character's hex value for its ASCII code, and xx stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

F3 Example: Send all characters up to a particular character

1234567890ABCDEFGHIJ
Using the bar code above, send all characters up to but not including "D," followed by a carriage return.

Command string: F3440D

F3 is the "Send all characters up to a particular character" command
44 is the hex value for a ' D "
OD is the hex value for a $C R$
The data is output as:
1234567890ABC <CR>

Send all characters up to a string

B9 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search string "s...s." The cursor is moved forward to the beginning of the "s...s" string. Syntax = B9nnnns...s where nnnn stands for the length of the string, and s...s stands for the string to be matched. The string is made up of hex values for the characters in the string. Refer to the (see ASCII Conversion Chart (Code Page 1252) on page 242) for decimal, hex and character codes.

B9 Example: Send all characters up to a defined string

1234567890ABCDEFGHIJ
Using the bar code above, send all characters up to but not including "AB."
Command string: B900024142
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A

42 is the hex value for B
The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0}$

Send all but the last characters

E9 Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included. Syntax = E9nn where nn stands for the numeric value (00-99) for the number of characters that will not be sent at the end of the message.

Insert a character multiple times

F4 Send "xx" character " $n n$ " times in the output message, leaving the cursor in the current position. Syntax = F4xxnn where xx stands for the insert character's hex value for its ASCII code, and $n n$ is the numeric value (00-99) for the number of times it should be sent. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

E9 and F4 Example: Send all but the last characters, followed by 2 tabs

Send all characters except for the last 8 from the bar code above, followed by 2 tabs.

Command string: E908F40902
E9 is the "Send all but the last characters" command
08 is the number of characters at the end to ignore
F4 is the "Insert a character multiple times" command
09 is the hex value for a horizontal tab
02 is the number of times the tab character is sent
The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0 A B}$ <tab><tab>

Insert a string

BA Send "ss" string of "nn" length in the output message, leaving the cursor in the current position. Syntax = BAnnnns...s where nnnn stands for the length of the string, and s ...s stands for the string. The string is made up of hex values for the characters in the string. Refer to the ASCII Conversion Chart (Code Page 1252) on page 242 for decimal, hex and character codes.

$B 9$ and BA Example: Look for the string "AB" and insert 2 asterisks (**)
 1234567890, BCDEFGHIJ

Using the bar code above, send all characters up to but not including "AB." Insert 2 asterisks at that point, and send the rest of the data with a carriage return after.

Command string: B900024142BA00022A2AF10D
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A
42 is the hex value for B
BA is the "Insert a string" command
0002 is the length of the string to be added (2 characters)
2 A is the hex value for an asterisk (*)
2 A is the hex value for an asterisk (*)
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:
1234567890**ABCDEFGHIJ
<CR>

Insert symbology name

B3 Insert the name of the bar code's symbology in the output message, without moving the cursor. Only symbologies with a Honeywell ID are included (see Symbology Charts on page 239). Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Insert bar code length

B4 Insert the bar code's length in the output message, without moving the cursor. The length is expressed as a numeric string and does not include leading zeroes.
B3 and B4 Example: Insert the symbology name and length

1234567890ABCDEFGHIJ
Send the symbology name and length before the bar code data from the bar code above. Break up these insertions with spaces. End with a carriage return.

Command string: B3F42001B4F42001F10D

B3 is the "Insert symbology name" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
B4 is the "Insert bar code length" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:

Code128 20 1234567890ABCDEFGHIJ <CR>

Insert key strokes

B5 Insert a key stroke or combination of key strokes. Key strokes are dependent on your keyboard (see Keyboard Key References on page 249). Any key can be inserted, including arrows and functions. Syntax = B5xxssnn where $x x$ is the number of keys pressed (without key modifiers), ss is the key modifier from the table below, and nn is the key number from the Keyboard Key References, page 249.

Key Modifiers	
No Key Modifier	00
Shift Left	01
Shift Right	02
Alt Left	04
Alt Right	08
Control Left	10
Control Right	20

For example, B501021F inserts an "A" on a 104 key, U.S. style keyboard. B5 = the command, $01=$ number of keys pressed (without the key modifier), 02 is the key modifier for Shift Right, and 1F is the "a" key. If a lower case "a" were to be inserted, B501001F would be entered.

If there are three keystrokes, the syntax would change from B5xxssnn for one keystroke to $B 5 x x s s n n s s n n s s n n$. An example that would insert "abc" is as follows: B503001F00320030F833.

Note: Key modifiers can be added together when needed. Example: Control Left+Shift Left $=11$.

Example: Control Left+Shift Left = 17, converted to hexadecimal $=11$.

Move Commands

Move the cursor forward a number of characters

F5 Move the cursor ahead "nn" characters from current cursor position.
Syntax = F5nn where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved ahead.

F5 Example: Move the cursor forward and send the data

Move the cursor forward 3 characters, then send the rest of the bar code data from the bar code above. End with a carriage return.

Command string: F503F10D
F5 is the "Move the cursor forward a number of characters" command
03 is the number of characters to move the cursor
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
4567890ABCDEFGHIJ
<CR>

Move the cursor backward a number of characters

F6 Move the cursor back "nn" characters from current cursor position. Syntax = F6nn where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved back.

Move the cursor to the beginning

F7 Move the cursor to the first character in the input message. Syntax = F7.

FE and F7 Example: Manipulate bar codes that begin with a 1

1234567B90AECDEFGHIJ
Search for bar codes that begin with a 1. If a bar code matches, move the cursor back to the beginning of the data and send 6 characters followed by a carriage return. Using the bar code above:

Command string: FE31F7F2060D
FE is the "Compare characters" command
31 is the hex value for 1
F7 is the "Move the cursor to the beginning" command
F2 is the "Send a number of characters" command
06 is the number of characters to send
$O D$ is the hex value for a $C R$
The data is output as:
123456
<CR>

Move the cursor to the end

EA Move the cursor to the last character in the input message. Syntax = EA.

Search Commands

Search forward for a character

F8 Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F8xx where $x x$ stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

F8 Example: Send bar code data that starts after a particular character

1234567890AECDEFGHIJ
Search for the letter "D" in bar codes and send all the data that follows, including the "D." Using the bar code above:

Command string: F844F10D
F8 is the "Search forward for a character" command
44 is the hex value for "D"

F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
DEFGHIJ
<CR>

Search backward for a character

F9 Search the input message backward for " $x x$ " character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F9xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Search forward for a string

B0 Search forward for "s" string from the current cursor position, leaving cursor pointing to "s" string. Syntax $=B 0 n n n n S$ where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B0000454657374 searches forward for the first occurrence of the 4 character string "Test." Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

BO Example: Send bar code data that starts after a string of characters

Search for the letters "FGH" in bar codes and send all the data that follows, including "FGH." Using the bar code above:

Command string: B00003464748F10D
BO is the "Search forward for a string" command
0003 is the string length (3 characters)
46 is the hex value for " F "
47 is the hex value for " G "
48 is the hex value for " H "
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:
FGHIJ
<CR>

Search backward for a string

B1 Search backward for "s" string from the current cursor position, leaving cursor pointing to " s " string. Syntax = B1nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B1000454657374 searches backward for the first occurrence of the 4 character string "Test." Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Search forward for a non-matching character

E6 Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E6xx where $x x$ stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

E6 Example: Remove zeroes at the beginning of bar code data

$$
20107692
$$

This example shows a bar code that has been zero filled. You may want to ignore the zeroes and send all the data that follows. E6 searches forward for the first character that is not zero, then sends all the data after, followed by a carriage return. Using the bar code above:

Command string: E630F10D
E6 is the "Search forward for a non-matching character" command
30 is the hex value for 0
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:
37692
<CR>

Search backward for a non-matching character

E7 Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E7xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Miscellaneous Commands

Suppress characters

FB Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands. When the FC command is encountered, the suppress function is terminated. The cursor is not moved by the FB command. Syntax = FBnnxxyy . .zz where nn is a count of the number of suppressed characters in the list, and xxyy .. zz is the list of characters to be suppressed.

FB Example: Remove spaces in bar code data

This example shows a bar code that has spaces in the data. You may want to remove the spaces before sending the data. Using the bar code above:

Command string: FB0120F10D
FB is the "Suppress characters" command
01 is the number of character types to be suppressed
20 is the hex value for a space
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:
34567890
<CR >

Stop suppressing characters

FC Disables suppress filter and clear all suppressed characters. Syntax = FC.

Replace characters

E4 Replaces up to 15 characters in the output message, without moving the cursor. Replacement continues until the E5 command is encountered. Syntax = $E 4 n n x x_{1} x x_{2} y y_{1} y y_{2} \ldots z z_{1} z z_{2}$ where $n n$ is the total count of the number of characters in the list (characters to be replaced plus replacement characters); xx_{1} defines characters to be replaced and xx_{2} defines replacement characters, continuing through zz_{1} and zz_{2}.

E4 Example: Replace zeroes with CRs in bar code data

If the bar code has characters that the host application does not want included, you can use the E4 command to replace those characters with something else. In this example, you will replace the zeroes in the bar code above with carriage returns.

Command string: E402300DF10D

E4 is the "Replace characters" command

02 is the total count of characters to be replaced, plus the replacement characters
(0 is replaced by CR, so total characters $=2$)
30 is the hex value for 0
OD is the hex value for a CR (the character that will replace the 0)
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$
The data is output as:
1234
5678
ABC
<CR>

Stop replacing characters

E5 Terminates character replacement. Syntax = E5.

Compare characters

FE Compare the character in the current cursor position to the character "xx." If characters are equal, move the cursor forward one position. Syntax $=F E x x$ where $x x$ stands for the comparison character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Compare string

B2 Compare the string in the input message to the string "s." If the strings are equal, move the cursor forward past the end of the string. Syntax $=B 2 n n n n S$ where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B2000454657374 compares the string at the current cursor position with the 4 character string "Test." Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page 242 for decimal, hex and character codes.

Check for a number

EC Check to make sure there is an ASCII number at the current cursor position. The format is aborted if the character is not numeric.

EC Example: Only output the data if the bar code begins with a number

If you want only data from bar codes that begin with a number, you can use EC to check for the number.

Command string: ECF10D
EC is the "Check for a number" command
F1 is the "Send all characters" command
$O D$ is the hex value for a CR

If this bar code is read, $\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$ the next data format, if there is one, will be used on the data. If there is no other format, the format fails and the raw data is output as AB1234.

If this bar code is read: $\||||||||||||||||||||||| |$ the data is output as:
1234A.
1234AB
<CR>

Check for non-numeric character

ED Check to make sure there is a non-numeric ASCII character at the current cursor position. The format is aborted if the character is numeric.

ED Example: Only output the data if the bar code begins with a letter

If you want only data from bar codes that begin with a letter, you can use ED to check for the letter.

Command string: EDF10D
ED is the "Check for a non-numeric character" command
F1 is the "Send all characters" command
OD is the hex value for a CR
If this bar code is read, $\|\|\|\|\|\|\|\|\|\||\|\mid\|\|\|\|\|$ the next data format, if there is one, will be used on this data. If there is no other format, the format fails and the raw data is output as 1234 AB .

If this bar code is read: $\quad\||\||||\mid\| \|\| \|\| \|\| \|\| \| \|$ the data is output as: AB1234

AB1234

<CR>

Insert a delay

EF Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. Syntax = EFnnnn where nnnn stands for the delay in 5 ms increments, up to 9999. This command can only be used with keyboard emulation.

Discard Data

B8 Discards types of data. For example, you may want to discard Code 128 bar codes that begin with the letter A. In step 4 (page 88), select 6A (for Code 128), and in step 5 , select 9999 (for all lengths). Enter FE41B8 to compare and discard Code 128 bar codes that begin with the letter A. Syntax $=B 8$.

Note: The B8 command must be entered after all other commands.
The Data Format must be Required (see page 104) in order for the B8 command to work.
If Data Format is On, but Not Required (page 104), bar code data that meets the B8 format is scanned and output as usual.
Because the data format needs to be On and Required (page 104) for the B8 command, you must input data formats for all bar codes you wish to discard as well as all bar codes you wish to output.
Other data format settings impact the B8 command. If Data Format Non-Match Error Tone is On (page 105), the 8680i emits an error tone. If Data format Non-Match Error Tone is Off, the code is disabled for reading and no tone is sounded.

Data Formatter

When Data Formatter is turned Off, the bar code data is output to the host as read, including prefixes and suffixes.

You may wish to require the data to conform to a data format you have created and saved. The following settings can be applied to your data format:

- Data Formatter On, Not Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted.

- Data Formatter On, Not Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. If
a data format is not found for that symbol, the prefixes and suffixes are transmitted.

- Data Format Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted. Any data that does not match your data format requirements generates an error tone and the data in that bar code is not transmitted. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.

- Data Format Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. Any data that does not match your data format requirements generates an error tone. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.

Choose one of the following options. Default = Data Formatter On, Not Required, Keep Prefix/Suffix.

Data Formatter On, Not Required,
Drop Prefix/Suffix

Data Format Required, Drop Prefix/Suffix

Data Format Non-Match Error Tone

When a bar code is encountered that doesn't match your required data format, the 8680i normally generates an error tone. However, you may want to continue scanning bar codes without hearing the error tone. If you scan the Data Format Non-Match Error Tone Off bar code, data that doesn't conform to your data
format is not transmitted, and no error tone sounds. If you wish to hear the error tone when a non-matching bar code is found, scan the Data Format Non-Match Error Tone On bar code. Default = Data Format Non-Match Error Tone On.

* Data Format Non-Match Error Tone On

Data Format Non-Match Error Tone Off

Primary/Alternate Data Formats

You can save up to four data formats, and switch between these formats. Your primary data format is saved under 0 . Your other three formats are saved under 1, 2, and 3. To set your device to use one of these formats, scan one of the bar codes below.

Data Format 1

Single Scan Data Format Change

You can also switch between data formats for a single scan. The next bar code is scanned using an alternate data format, then reverts to the format you have selected above (either Primary, 1, 2, or 3).

For example, you may have set your device to the data format you saved as Data Format 3. You can switch to Data Format 1 for a single trigger press by scanning the Single Scan-Data Format 1 bar code below. The next bar code that is scanned uses Data Format 1, then reverts back to Data Format 3.

Single Scan-Data Format 2

SYMBOLOGIES

This programming section contains the following menu selections. Refer to Chapter 9 for settings and defaults.

- All Symbologies
- Aztec Code
- China Post (Hong Kong 2 of 5)
- Chinese Sensible (Han Xin) Code
- Codabar
- Codablock A
- Codablock F
- Code 11
- Code 128
- Code 32 Pharmaceutical (PARAF)
- Code 39
- Code 93
- Data Matrix
- DotCode
- EAN/JAN-13
- EAN/JAN-8
- GS1 Composite Codes
- GS1 DataBar Expanded
- GS1 DataBar Limited
- GS1 DataBar Omnidirectional
- GS1 Emulation
- GS1-128
- Interleaved 2 of 5
- Korea Post
- Label Code
- Matrix 2 of 5
- MaxiCode
- MicroPDF417
- MSI
- NEC 2 of 5
- Postal Codes - 2D
- Postal Codes - Linear
- PDF417
- GS1 DataBar Omnidirectional
- QR Code
- Straight 2 of 5 IATA (two-bar start/ stop)
- Straight 2 of 5 Industrial (three-bar start/stop)
- TCIF Linked Code 39 (TLC39)
- Telepen
- Trioptic Code
- UPC-A
- UPC-A/EAN-13 with Extended Coupon Code
- UPC-EO
- UPC-E1

All Symbologies

For best scanning performance, we recommend you only enable the symbologies that you need. Scan All Symbologies Off to disable all symbologies, then enable the symbologies you need by scanning the On bar code for each symbology.

Message Length Description

You are able to set the valid reading length of some of the bar code symbologies. You may wish to set the same value for minimum and maximum length to force the 8680i to read fixed length bar code data. This helps reduce the chances of a misread.

Example: Decode only those bar codes with a count of 9-20 characters.
Min. length = 09
Max. length $=20$
Example: Decode only those bar codes with a count of 15 characters.
Min. length $=15$
Max. length $=15$
For a value other than the minimum and maximum message length defaults, scan the bar codes included in the explanation of the symbology, then scan the digit value of the message length and Save bar codes from the Programming Chart, beginning on page 253. The minimum and maximum lengths and the defaults are included with the respective symbologies.

Codabar

<Default All Codabar Settings>

Codabar On/Off

Codabar Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/Stop characters. Default = Don't Transmit.

Codabar Check Character

Codabar check characters are created using different "modulos." You can program the 8680i to read only Codabar bar codes with Modulo 16 check characters. Default = No Check Character.

No Check Character indicates that the 8680i reads and transmits bar code data with or without a check character.

When Check Character is set to Validate and Transmit, the 8680i only reads Codabar bar codes printed with a check character, and transmits this character at the end of the scanned data.

When Check Character is set to Validate, but Don't Transmit, the 8680i only reads Codabar bar codes printed with a check character, but does not transmit the check character with the scanned data.

Validate Modulo 16, but Don't Transmit

Codabar Concatenation

Codabar supports symbol concatenation. When you enable concatenation, the 8680i looks for a Codabar symbol having a "D" start character, adjacent to a symbol having a "D" stop character. In this case the two messages are concatenated into one with the "D" characters omitted.

Select Require to prevent the 8680i from decoding a single "D" Codabar symbol without its companion. This selection has no effect on Codabar symbols without Stop/Start D characters. Default = Off.

Codabar Redundancy

If you are encountering errors when reading Codabar bar codes, you may want to adjust the redundancy count. Redundancy adjusts the number of times a bar code is decoded before transmission, which may reduce the number of errors. Note that the higher the redundancy count, the longer it will take to decode the bar code. To adjust the redundancy, scan the Codabar Redundancy bar code below, then scan a redundancy count between 0 and 10 on the Programming Chart, beginning on page 253. Then scan the Save bar code. Default $=0$.

CBRVOT.
Codabar Redundancy

Codabar Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=2-60$. Minimum Default $=4$, Maximum Default $=60$.

Minimum Message Length

Maximum Message Length

Code 39

< Default All Code 39 Settings >

Code 39 On/Off

If you are reading Code 39 bar codes, Codablock A should remain disabled. If you are enabling Codablock A (see Codablock A on page 147), you should disable Code 39.

Code 39 Start / Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/Stop characters. Default = Don't Transmit.

Code 39 Check Character

No Check Character indicates that the 8680i reads and transmits bar code data with or without a check character.

When Check Character is set to Validate, but Don't Transmit, the unit only reads Code 39 bar codes printed with a check character, but does not transmit the check character with the scanned data.

When Check Character is set to Validate and Transmit, the 8680i only reads Code 39 bar codes printed with a check character, and transmits this character at the end of the scanned data. Default = No Check Character.

C39CK20.

* No Check Character

Validate, but Don't Transmit

Validate and Transmit

Code 39 Redundancy

If you are encountering errors when reading Code 39 bar codes, you may want to adjust the redundancy count. Redundancy adjusts the number of times a bar code is decoded before transmission, which may reduce the number of errors. Note that the higher the redundancy count, the longer it will take to decode the bar code. To adjust the redundancy, scan the Code 39 Redundancy bar code below, then scan a redundancy count between 0 and 10 on the Programming Chart, beginning on page 253. Then scan the Save bar code. Default = 0 .

C39VOT
Code 39 Redundancy

Code 39 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=0-48$. Minimum Default $=0$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Code 39 Append

This function allows the 8680i to append the data from several Code 39 bar codes together before transmitting them to the host computer. When the 8680i encounters a Code 39 bar code with the append trigger character(s), it buffers Code 39 bar codes until it reads a Code 39 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

Code 32 Pharmaceutical (PARAF)

Code 32 Pharmaceutical is a form of the Code 39 symbology used by Italian pharmacies. This symbology is also known as PARAF.

Note: Trioptic Code (page 147) must be turned off while scanning Code 32 Pharmaceutical codes.

C39B320.

If Full ASCII Code 39 decoding is enabled, certain character pairs within the bar code symbol are interpreted as a single character. For example: \$V is decoded as the ASCII character SYN, and /C is decoded as the ASCII character \#. Default = Off.

Full ASCII Table

NUL \%U	DLE \$P	SP	SPACE	0	0	@	\%V	P	P		\%W	p	+P
SOH \$ A	DC1 \$Q		/A	1	1	A	A	Q	Q	a	+A	a	+Q
STX \$ ${ }^{\text {c }}$	DC2 \$R		/B	2	2	B	B	R	R	b	+B	r	+R
ETX \$C	DC3 \$S	\#	/C	3	3	C	C	S	S	c	+C	s	+S
EOT \$D	DC4 \$T	\$	/D	4	4	D	D	T	T	d	+D	t	+T
ENQ \$E	NAK \$U	\%	/E	5	5	E	E	U	U	e	+E	u	+U
ACK \$F	SYN \$V	\&	/F	6	6	F	F	v	v	f	+F	v	+V
BEL \$G	ETB \$W		/G	7	7	G	G	W	W	9	+G	w	+W
BS \$H	CAN \$X	(/H	8	8	H	H	X	X	b	+ H	\times	+X
HT \$1	EM \$Y)	/	9	9		।	Y	Y	i	$+1$	y	+Y
LF \$J	SUB \$ 2	*	/J		/Z	J	J	z	Z	j	+J	z	+Z
VT \$K	ESC \%A	+	/K		\%F	K	K	[\%K	k	+K	$\{$	\%P
FF \$L	FS \%B		/L		\%G	L	L	\backslash	\%L	1	+L	\|	\%Q
CR \$M	GS \%C	-	-	$=$	\%H	M	M]	\%M	m	+M	\}	\%R
SO \$N	RS \%D			>	\%	N	N	\wedge	\%N	n	$+\mathrm{N}$	~	\%S
SI \$0	US \%E	/	10	?	\%J	0	0		\%	-	+0		\%T

Character pairs / M and / N decode as a minus sign and period respectively. Character pairs /P through /Y decode as 0 through 9.

Code 39 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

Interleaved 2 of 5

Interleaved 2 of 5 On/Off

* On

Check Digit

No Check Digit indicates that the 8680i reads and transmits bar code data with or without a check digit.

When Check Digit is set to Validate, but Don't Transmit, the unit only reads Interleaved 2 of 5 bar codes printed with a check digit, but does not transmit the check digit with the scanned data.

When Check Digit is set to Validate and Transmit, the 8680i only reads Interleaved 2 of 5 bar codes printed with a check digit, and transmits this digit at the end of the scanned data. Default = No Check Digit.

Validate, but Don't Transmit

Interleaved 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=6$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

FEBRABAN Decode

Scan the bar codes below to turn FEBRABAN Boleto decoding on or off. Default = Off.

FEBRABAN Decode On

*FEBRABAN Decode Off

NEC 2 of 5

< Default All NEC 2 of 5 Settings >

NEC 2 of 5 On/Off

Check Digit

No Check Digit indicates that the 8680i reads and transmits bar code data with or without a check digit.

When Check Digit is set to Validate, but Don't Transmit, the unit only reads NEC 2 of 5 bar codes printed with a check digit, but does not transmit the check digit with the scanned data.

When Check Digit is set to Validate and Transmit, the 8680i only reads NEC 2 of 5 bar codes printed with a check digit, and transmits this digit at the end of the scanned data. Default = No Check Digit.

N25CK20.

* No Check Digit

Validate, but Don't Transmit

NEC 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length
< Default All Code 93 Settings >

Code 93 On/Off

Code 93 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths = 0-80. Minimum Default = 0, Maximum Default $=80$.

Maximum Message Length

Code 93 Append

This function allows the 8680i to append the data from several Code 93 bar codes together before transmitting them to the host computer. When this function is enabled, the 8680i stores those Code 93 bar codes that start with a space (excluding the start and stop symbols), and does not immediately transmit the data. The 8680i stores the data in the order in which the bar codes are read, deleting the first space from each. The 8680i transmits the appended data when it reads a Code 93 bar code that starts with a character other than a space. Default = Off.

On

Code 93 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

Straight 2 of 5 Industrial (three-bar start/stop)

<Default All Straight 2 of 5 Industrial Settings>

R25DFT.

Straight 2 of 5 Industrial On/Off

R25ENA1.
On

Straight 2 of 5 Industrial Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Straight 2 of 5 IATA (two-bar start/stop)

<Default All Straight 2 of 5 IATA Settings>

Straight 2 of 5 IATA On/Off

 A25ENA1.
 On

Straight 2 of 5 IATA Redundancy

If you are encountering errors when reading Straight 2 of 5 IATA bar codes, you may want to adjust the redundancy count. Redundancy adjusts the number of times a bar code is decoded before transmission, which may reduce the number of errors. Note that the higher the redundancy count, the longer it will take to decode the bar
code. To adjust the redundancy, scan the Straight 2 of 5 IATA Redundancy bar code below, then scan a redundancy count between 0 and 10 on the Programming Chart, beginning on page 253. Then scan the Save bar code. Default $=0$.

Straight 2 of 5 IATA

Redundancy

Straight 2 of 5 IATA Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

A25MIN.
Minimum Message Length

Matrix 2 of 5

<Default All Matrix 2 of 5 Settings>

Matrix 2 of 5 On/Off

Matrix 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Code 11

<Default All Code 11 Settings>

Code 11 On/Off

Check Digits Required

This option sets whether 1 or 2 check digits are required with Code 11 bar codes. Default = Two Check Digits.

Code 11 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

C11MIN.
Minimum Message Length

Code 128

<Default All Code 128 Settings>

Code 128 On/Off

Off
If you are reading Code 128 bar codes, Codablock F should remain disabled. If you are enabling Codablock F (see Codablock F on page 148), you should disable Code 128.

ISBT 128 Concatenation

In 1994 the International Society of Blood Transfusion (ISBT) ratified a standard for communicating critical blood information in a uniform manner. The use of ISBT formats requires a paid license. The ISBT 128 Application Specification describes 1) the critical data elements for labeling blood products, 2) the current recommendation to use Code 128 due to its high degree of security and its space-
efficient design, 3) a variation of Code 128 that supports concatenation of neighboring symbols, and 4) the standard layout for bar codes on a blood product label. Use the bar codes below to turn concatenation on or off. Default=Off.

ISBENA1.
On

Code 128 Redundancy

If you are encountering errors when reading Code 128 bar codes, you may want to adjust the redundancy count. Redundancy adjusts the number of times a bar code is decoded before transmission, which may reduce the number of errors. Note that the higher the redundancy count, the longer it will take to decode the bar code. To adjust the redundancy, scan the Code 128 Redundancy bar code below, then scan a redundancy count between 0 and 10 on the Programming Chart, beginning on page 253. Then scan the Save bar code. Default = 0 .

Code 128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths = 0-80. Minimum Default = 0, Maximum Default = 80.

Minimum Message Length

128MAX
Maximum Message Length

Code 128 Append

This function allows the 8680i to append the data from several Code 128 bar codes together before transmitting them to the host computer. When the 8680i encounters a Code 128 bar code with the append trigger character(s), it buffers

Code 128 bar codes until it reads a Code 128 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

Code 128 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

<Default All GS1-128 Settings>

GS1-128 On/Off

GS1-128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=1$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Telepen

<Default All Telepen Settings>

Telepen 0n/Off

On

Telepen Output

Using AIM Telepen Output, the 8680i reads symbols with start/stop pattern 1 and decodes them as standard full ASCII (start/stop pattern 1). When Original Telepen Output is selected, the 8680i reads symbols with start/stop pattern 1 and decodes them as compressed numeric with optional full ASCII (start/stop pattern 2).
Default = AIM Telepen Output.

Telepen Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-60$. Minimum Default $=1$, Maximum Default $=60$.

Minimum Message Length

UPC-A
<Default All UPC-A Settings>

UPC-A On/Off

Note: To convert UPC-A bar codes to EAN-13, see Convert UPC-A to EAN-13 on page 134.

UPC-A Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-A Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but can be programmed so it is not transmitted (Off). Default = On.

UPC-A Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-A data. Default = Off for both 2 Digit and 5 Digit Addenda.

UPAAD20.

* 2 Digit Addenda Off

UPC-A Addenda Required

When Required is scanned, the 8680i only reads UPC-A bar codes that have addenda. You must then turn on a 2 or 5 digit addenda listed on page 128. Default = Not Required.

UPAARQ0.

* Not Required

Addenda Timeout

You can set a time during which the 8680i looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-120 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500$.

Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

UPC-A Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default = On.

UPC-A/EAN-13 with Extended Coupon Code

Use the following codes to enable or disable UPC-A and EAN-13 with Extended Coupon Code. When left on the default setting (Off), the 8680i treats Coupon Codes and Extended Coupon Codes as single bar codes.

If you scan the Allow Concatenation code, when the 8680i sees the coupon code and the extended coupon code in a single scan, it transmits both as one symbologies. Otherwise, it transmits the first coupon code it reads.

If you scan the Require Concatenation code, the 8680i must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read. Default = Off.

Addenda Timeout

You can set a time during which the 8680i looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A/EAN-13 with Extended Coupon Code. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-120 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500$.

Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

DLYADD.
Addenda Timeout

Coupon GS1 DataBar Output

If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. Scan the GS1 Output On code below to scan and output only the GS1 DataBar code data. Default = GS1 Output Off.

CPNGS10.

* GS1 Output Off

UPC-EO
<Default All UPC-E Settings>

UPC-EO On/Off

Most U.P.C. bar codes lead with the 0 number system. To read these codes, use the UPC-EO On selection. If you need to read codes that lead with the 1 number system, use UPC-E1 (page 134). Default = On.

UPC-EO Expand

UPC-E Expand expands the UPC-E code to the 12 digit, UPC-A format. Default = Off.

UPEEXP1.
On

UPC-EO Addenda Required

When Required is scanned, the 8680i only reads UPC-E bar codes that have addenda. Default $=$ Not Required.

Required

Addenda Timeout

You can set a time during which the 8680i looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-EO Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-120 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500$.

Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

UPC-EO Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default = On.

UPC-EO Check Digit

Check Digit specifies whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-EO Leading Zero

This feature allows the transmission of a leading zero (0) at the beginning of scanned data. To prevent transmission, scan Off. Default = On.

UPC-EO Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-E data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPEAD20.

* 2 Digit Addenda Off

* 5 Digit Addenda Off

Most U.P.C. bar codes lead with the 0 number system. For these codes, use UPC-EO (page 131). If you need to read codes that lead with the 1 number system, use the UPC-E1 On selection. Default = Off.

EAN/JAN-13

EAN/JAN-13 On/Off

Convert UPC-A to EAN-13

When UPC-A Converted to EAN-13 is selected, UPC-A bar codes are converted to 13 digit EAN-13 codes by adding a zero to the front. When Do not Convert UPC-A is selected, UPC-A codes are read as UPC-A. Default = Do not Convert UPC-A.

EAN/JAN-13 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default = On.

EAN/JAN-13 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-13 data. Default = Off for both 2 Digit and 5 Digit Addenda.

EAN/JAN-13 Addenda Required

When Required is scanned, the 8680i only reads EAN/JAN-13 bar codes that have addenda. Default $=$ Not Required.

EAN-13 Beginning with 290 Addenda Required

This setting programs the 8680i to require a 5 digit addenda only on EAN-13 bar codes that begin with "290." The following settings can be programmed:

Require 5 Digit Addenda: All EAN-13 bar codes that begin with "290" must have a 5 digit addendum. The EAN-13 bar code with the 5 digit addendum is then transmitted as a single, concatenated bar code. If a 5 digit addendum is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require 5 Digit Addenda: If you have selected Require 5 Digit Addenda, and you want to disable this feature, scan Don't Require 5 Digit Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default $=$ Don't Require 5 Digit Addenda.

* Don't Require 5 Digit Addenda

Require 5 Digit Addenda

EAN-13 Beginning with 378/379 Addenda Required

This setting programs the 8680 i to require any combination of a 2 digit addenda or a 5 digit addenda on EAN-13 bar codes that begin with a " 378 " or " 379 ." The following settings can be programmed:

Require Addenda: All EAN-13 bar codes that begin with a " 378 " or " 379 " must have a 2 digit addenda, a 5 digit addenda, or a combination of these addenda. The EAN-13 bar code with the addenda is then transmitted as a single, concatenated bar code. If the required addenda is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require Addenda: If you have selected Require Addenda, and you want to disable this feature, scan Don't Require Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default = Don't Require Addenda.

ARQ3780.

* Don't Require Addenda

Require 5 Digit Addenda

EAN-13 Beginning with 414/419 Addenda Required

This setting programs the 8680i to require any combination of a 2 digit addenda or a 5 digit addenda on EAN-13 bar codes that begin with a "414" or "419." The following settings can be programmed:

Require Addenda: All EAN-13 bar codes that begin with a "414" or "419" must have a 2 digit addenda, a 5 digit addenda, or a combination of these addenda. The EAN-13 bar code with the addenda is then transmitted as a single, concatenated bar code. If the required addenda is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require Addenda: If you have selected Require Addenda, and you want to disable this feature, scan Don't Require Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default = Don't Require Addenda.

Require 2 Digit Addenda

EAN-13 Beginning with 434/439 Addenda Required

This setting programs the 8680i to require any combination of a 2 digit addenda or a 5 digit addenda on EAN-13 bar codes that begin with a " 434 " or " 439 ." The following settings can be programmed:

Require Addenda: All EAN-13 bar codes that begin with a " 434 " or " 439 " must have a 2 digit addenda, a 5 digit addenda, or a combination of these addenda. The EAN-13 bar code with the addenda is then transmitted as a single, concatenated bar code. If the required addenda is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require Addenda: If you have selected Require Addenda, and you want to disable this feature, scan Don't Require Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default $=$ Don't Require Addenda.

* Don't Require Addenda

Require 2 Digit Addenda

Require 5 Digit Addenda

Require 2 or 5 Digit Addenda

EAN-13 Beginning with 977 Addenda Required

This setting programs the 8680i to require a 2 digit addenda only on EAN-13 bar codes that begin with " 977 ." The following settings can be programmed:

Require 2 Digit Addenda: All EAN-13 bar codes that begin with " 977 " must have a 2 digit addendum. The EAN-13 bar code with the 2 digit addendum is then transmitted as a single, concatenated bar code. If a 2 digit addendum is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require 2 Digit Addenda: If you have selected Require 2 Digit Addenda, and you want to disable this feature, scan Don't Require 2 Digit Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default = Don't Require 2 Digit Addenda.

* Don't Require 2 Digit Addenda

EAN-13 Beginning with 978 Addenda Required

These settings program the 8680i to require a 5 digit addenda only on EAN-13 bar codes that begin with " 978 ." The following settings can be programmed:

Require 5 Digit Addenda: All EAN-13 bar codes that begin with " 978 " must have a 5 digit addendum. The EAN-13 bar code with the 5 digit addendum is then transmitted as a single, concatenated bar code. If a 5 digit addendum is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require 5 Digit Addenda: If you have selected Require 5 Digit Addenda, and you want to disable this feature, scan Don't Require 5 Digit Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default = Don't Require 5 Digit Addenda.

ARQ9780.

* Don't Require 5 Digit Addenda

EAN-13 Beginning with 979 Addenda Required

These settings program the 8680i to require a 5 digit addenda only on EAN-13 bar codes that begin with "979." The following settings can be programmed:

Require 5 Digit Addenda: All EAN-13 bar codes that begin with " 979 " must have a 5 digit addendum. The EAN-13 bar code with the 5 digit addendum is then transmitted as a single, concatenated bar code. If a 5 digit addendum is not found within the Addenda Timeout period, the EAN-13 bar code is discarded.

Don't Require 5 Digit Addenda: If you have selected Require 5 Digit Addenda, and you want to disable this feature, scan Don't Require 5 Digit Addenda. EAN-13 bar codes are transmitted, depending on the setting you are using for EAN/JAN-13 Addenda Required.

Default $=$ Don't Require 5 Digit Addenda.

ARQ9790

* Don't Require 5 Digit Addenda

Addenda Timeout

You can set a time during which the 8680i looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-EO Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-120 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500$.

Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

EAN/JAN-13 Addenda Separator

When this feature is On, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default = On.

Note: If you want to enable or disable EAN13 with Extended Coupon Code, refer to UPC-A/ EAN-13 with Extended Coupon Code (page 130).

ISBN Translate

When On is scanned, EAN-13 Bookland symbols are translated into their equivalent ISBN number format. Default = Off.

EAN/JAN-8
<Default All EAN/JAN-8 Settings>

EAN/JAN-8 On/Off

EAN/JAN-8 Check Digit

This selection allows you to specify whether or not the check digit should be transmitted at the end of the scanned data. Default = On.

EAN/JAN-8 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-8 data. Default = Off for both 2 Digit and 5 Digit Addenda.

* 2 Digit Addenda Off

EAN/JAN-8 Addenda Required

When Required is scanned, the 8680i only reads EAN/JAN-8 bar codes that have addenda. Default $=$ Not Required.

Addenda Timeout

You can set a time during which the 8680i looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-EO Addenda Required. Set the length
(in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-120 milliseconds) by scanning digits, then the Save bar code from the Programming Chart on page 253. Default $=500$.

Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

EAN/JAN-8 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default = On.

MSI On/Off

On

MSI Check Character

Different types of check characters are used with MSI bar codes. You can program the 8680 i to read MSI bar codes with Type 10 check characters. Default = Validate Type 10, but Don't Transmit.

When Check Character is set to Validate Type 10/11 and Transmit, the 8680i only reads MSI bar codes printed with the specified type check character(s), and transmits the character(s) at the end of the scanned data.

When Check Character is set to Validate Type 10/11, but Don't Transmit, the unit only reads MSI bar codes printed with the specified type check character(s), but does not transmit the check character(s) with the scanned data.

Validate Type 10 and Transmit

Validate 2 Type 10 Characters, but Don't Transmit

MSICHK3.
Validate 2 Type 10 Characters
and Transmit

Validate Type 11 then Type 10 Character, but Don't Transmit

Disable MSI Check Characters

MSI Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=4-48$. Minimum Default $=4$, Maximum Default $=48$.

Maximum Message Length

GS1 DataBar Omnidirectional

< Default All GS1 DataBar Omnidirectional Settings >

GS1 DataBar Omnidirectional On/Off

GS1 DataBar Limited

< Default All GS1 DataBar Limited Settings >

GS1 DataBar Limited On/Off

GS1 DataBar Expanded
 < Default All GS1 DataBar Expanded Settings >

GS1 DataBar Expanded On/Off

* On

Off

GS1 DataBar Expanded Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=4-74$. Minimum Default $=4$, Maximum Default $=74$.

Minimum Message Length

Trioptic Code

Note: If you are going to scan Code 32 Pharmaceutical codes (page 113), Trioptic Code must be off.

Trioptic Code is used for labeling magnetic storage media.

TRIENA1.
On

Codablock A

<Default All Codablock A Settings>

Codablock A On/Off

If you are reading Code 39 bar codes, Codablock A should remain disabled. If you are enabling Codablock A, you should disable Code 39 (see Code 39 on page 111).

Codablock A Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-600$. Minimum Default $=1$, Maximum Default $=600$.

Minimum Message Length

Maximum Message Length

Codablock F

<Default All Codablock F Settings>

Codablock F On/Off

If you are reading Code 128 bar codes, Codablock F should remain disabled. If you are enabling Codablock F, you should disable Code 128 (see Code 128 on page 123).

Codablock F Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-2048$. Minimum Default $=1$, Maximum Default $=2048$.

Minimum Message Length

Maximum Message Length

Label Code

The standard Label Code is used in libraries. Default = Off.

PDF417
< Default All PDF417 Settings >

PDF417 On/Off

PDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-2750$. Minimum Default $=1$, Maximum Default $=2750$.

PDFMIN
Minimum Message Length

MacroPDF417

MacroPDF417 is an implementation of PDF417 capable of encoding very large amounts of data into multiple PDF417 bar codes. When this selection is enabled, these multiple bar codes are assembled into a single data string. Default $=$ On.

MicroPDF417
< Default All MicroPDF417 Settings >

MPDDFT.

MicroPDF417 On/Off

 MPDENA1.
 On

MicroPDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-366$. Minimum Default $=1$, Maximum Default $=366$.

Minimum Message Length

Maximum Message Length

GS1 Composite Codes

Linear codes are combined with a unique 2D composite component to form a new class called GS1 Composite symbology. GS1 Composite symbologies allow for the co-existence of symbologies already in use. Default = Off.

UPC/EAN Version

Scan the UPC/EAN Version On bar code to decode GS1 Composite symbols that have a U.P.C. or an EAN linear component. (This does not affect GS1 Composite symbols with a GS1-128 or GS1 linear component.) Default $=$ UPC/EAN Version Off.

Note: If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. See Coupon GS1 DataBar Output (page 131) for further information.

GS1 Composite Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-2435$. Minimum Default $=1$, Maximum Default $=2435$.

Minimum Message Length

Maximum Message Length

GS1 Emulation

The 8680i can automatically format the output from any GS1 data carrier to emulate what would be encoded in an equivalent GS1-128 or GS1 DataBar symbol. GS1 data carriers include UPC-A and UPC-E, EAN-13 and EAN-8, ITF-14, GS1128, and GS1-128 DataBar and GS1 Composites. (Any application that accepts GS1 data can be simplified since it only needs to recognize one data carrier type.)

If GS1-128 Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1128 AIM ID, JC1 (see Symbology Charts on page 239).

If GS1 DataBar Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-DataBar AIM ID, Jem (see Symbology Charts on page 239).

If GS1 Code Expansion Off is scanned, retail code expansion is disabled, and UPCE expansion is controlled by the UPC-EO Expand (page 131) setting. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page 239).

If EAN8 to EAN13 Conversion is scanned, all EAN8 bar codes are converted to EAN13 format.

Default = GS1 Emulation Off.

GS1 DataBar Emulation

EAN8 to EAN13 Conversion

 * GS1 Emulation Off

TCIF Linked Code 39 (TLC39)

This code is a composite code since it has a Code 39 linear component and a MicroPDF417 stacked code component. All bar code readers are capable of reading the Code 39 linear component. The MicroPDF417 component can only be decoded if TLC39 On is selected. The linear component may be decoded as Code 39 even if TLC39 is off. Default = Off.

< Default All QR Code Settings >

QR Code On/Off

This selection applies to both QR Code and Micro QR Code. Default = On.

QR Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-7089$. Minimum Default $=1$, Maximum Default $=7089$.

Minimum Message Length

Maximum Message Length

QR Code Append

This function allows the 8680i to append the data from several QR Code bar codes together before transmitting them to the host computer. When the 8680 i encounters an QR Code bar code with the append trigger character(s), it buffers the number of QR Code bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

QR Code Page

QR Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646

Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

DotCode

< Default All DotCode Settings >

DotCode On/Off

Poor Quality DotCodes

This setting improves the 8680i's ability to read damaged or badly printed DotCodes. Default = Poor Quality DotCodes Off.

Poor Quality DotCodes On

* Poor Quality DotCodes Off

DotCode Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-2400$. Minimum Default $=1$, Maximum Default $=2400$.

Minimum Message Length

Data Matrix

< Default All Data Matrix Settings >

Data Matrix On/Off

Direct Part Marking Decoding

If you are having trouble reading Direct Part Marking (DPM) bar codes, scan Dotpeen DPM Decoding for Dotpeen codes or scan Reflective (Etched) DPM
Decoding for reflective (etched) codes. Default = Disable DPM Decoding.

Reflective (Etched) DPM
Decoding

Data Matrix Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-3116$. Minimum Default $=1$, Maximum Default $=3116$.

IDMMIN.
Minimum Message Length

Data Matrix Code Page

Data Matrix Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

MaxiCode On/Off

MaxiCode Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-150$. Minimum Default = 1, Maximum Default $=150$.

Minimum Message Length
< Default All Aztec Code Settings >

Aztec Code On/Off

Aztec Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-3832$. Minimum Default $=1$, Maximum Default $=3832$.

Minimum Message Length

Maximum Message Length

Aztec Append

This function allows the 8680i to append the data from several Aztec bar codes together before transmitting them to the host computer. When the 8680 i encounters an Aztec bar code with the append trigger character(s), it buffers the number of Aztec bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

Aztec Code Page

Aztec Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page 246), and scan the value and the Save bar code from the Programming Chart, beginning on page 253. The data characters should then appear properly.

Aztec Code Page

Chinese Sensible (Han Xin) Code

 < Default All Han Xin Settings >

Han Xin Code On/Off

Han Xin Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=1-7833$. Minimum Default $=1$, Maximum Default $=7833$.

Minimum Message Length

Maximum Message Length

Postal Codes - 2D

The following lists the possible 2D postal codes, and 2D postal code combinations that are allowed. Only one 2D postal code selection can be active at a time. If you scan a second 2D postal code selection, the first selection is overwritten. Default = Intelligent Mail Bar Code On.

Single 2D Postal Codes:

Australian Post On

* Intelligent Mail Bar Code On

Planet Code On
Also see Planet Code Check Digit, page 164.

Postnet On
Also see Postnet Check Digit, page 165.

Combination 2D Postal Codes:

POSTAL20
Intelligent Mail Bar Code and Postnet with B and B' Fields On

Postnet and
Postal-4i On

Postal-4i and
Intelligent Mail Bar Code On

POSTAL19.
Postal-4i and

Planet Code and Postnet On

POSTAL13.
Planet Code and Postal-4i On

POSTAL15
Planet Code and Intelligent Mail Bar Code

POSTAL21.
Planet Code,
Postnet, and
Postal-4i On

Planet Code,
Postnet, and
Intelligent Mail Bar Code On

Planet Code,
Postal-4i, and
Intelligent Mail Bar Code On

Planet Code,
Postal-4i, and
Postnet with B and B' Fields On

Intelligent Mail Bar Code, and Postnet with B and B' Fields On

POSTAL29.
Planet Code,
Postal-4i,
Intelligent Mail Bar Code, and Postnet with B and B' Fields On

Planet Code Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Planet Code data. Default = Don't Transmit.

PLNCKX1.
Transmit Check Digit

Postnet Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Postnet data. Default = Don't Transmit.

* Don't Transmit Check Digit

Australian Post Interpretation

This option controls what interpretation is applied to customer fields in Australian 4-State symbols.

Bar Output lists the bar patterns in "O123" format.
Numeric \mathbf{N} Table causes that field to be interpreted as numeric data using the N Table.

Alphanumeric C Table causes the field to be interpreted as alphanumeric data using the C Table. Refer to the Australian Post Specification Tables.

Combination C and \mathbf{N} Tables causes the field to be interpreted using either the C or N Tables.

Combination \mathbf{C} and \mathbf{N} Tables

Postal Codes - Linear

The following lists linear postal codes. Any combination of linear postal code selections can be active at a time.

China Post (Hong Kong 2 of 5)

<Default All China Post (Hong Kong 2 of 5) Settings>

China Post (Hong Kong 2 of 5) On/Off

China Post (Hong Kong 2 of 5) Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Korea Post

Korea Post Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 108) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Korea Post Check Digit

This selection allows you to specify whether the check digit should be transmitted or not. Default = Don't Transmit.

Transmit Check Digit

IMAGING COMMANDS

The 8680i is like a digital camera in the way it captures, manipulates, and transfers images. The following commands allow you to alter the way the 8680i performs these functions.

Single-Use Basis

Imaging Commands with their modifiers send instructions to the 8680i on a single-use basis, and take effect for a single image capture. Once that capture is complete, the 8680i reverts to its imaging default settings. If you want to permanently change a setting, you must use the serial default commands (see Chapter 9). When the serial default command is used, that selection becomes the new, permanent setting for the 8680 i .

Command Syntax

Multiple modifiers and commands can be issued within one sequence. If additional modifiers are to be applied to the same command, just add the modifiers to that command. For example, to add 2 modifiers to the Image Snap command, such as setting the Imaging Style to 1P and the Wait for Trigger to 1 T, you would enter IMGSNP1P1T.

Note: After processing an image capture command (IMGSNP or IMGBOX), you must follow it with an IMGSHP command if you want to see it on your terminal.

To add a command to a sequence, each new command is separated with a semicolon. For example, to add the Image Ship command to the above sequence, you would enter IMGSNP1P1T;IMGSHP.

The imaging commands are:
Image Snap - IMGSNP (page 170)
Image Ship - IMGSHP (page 173)
Intelligent Signature Capture - IMGBOX (page 183)

The modifiers for each of these commands follow the command description.
Note: The images included with each command description are examples only. The results you achieve may be different from those included in this manual. The quality of the output you receive will vary depending on lighting, quality of the initial image/object being captured, and distance of the 8680i from the image/object. To achieve a high quality image, it is recommended that you position your 8680i 4-6" (10.2-15.2 cm) away from the object you are capturing.

Step 1 - Take a Picture Using IMGSNP

Image Snap - IMGSNP

An image is taken whenever the hardware trigger is pressed, or when the Image Snap (IMGSNP) command is processed.

The image snap command has many different modifiers that can be used to change the look of the image in memory. Any number of modifiers may be appended to the IMGSNP command.

Example: You can use the following command to snap an image, increase the gain, and have the beeper sound once the snap is complete: IMGSNP2G1B

IMGSNP Modifiers

P - Imaging Style
This sets the Image Snap style.
OP Decoding Style. This processing allows a few frames to be taken until the exposure parameters are met. The last frame is then available for further use.

1P Photo Style (default). This mimics a simple digital camera, and results in a visually optimized image.

2P Manual Style. This is an advanced style that should only be used by an experienced user. It allows you the most freedom to set up the 8680i, and has no auto-exposure.

B - Beeper

Causes a beep to sound after an image is snapped.
OB No beep (default)
1B Sounds a beep when the image is captured.

Waits for a hardware trigger press before taking the image. This is only available when using Photo Style (1P).

OT Takes image immediately (default)
1T Waits for a trigger press, then takes the image

L- LED State

Determines if the LEDs should be on or off, and when. Ambient illumination (OL) is preferred for taking pictures of color documents, such as ID cards. LED State is not available when using Decoding Style (OP).

OL LEDs off (default)
1L LEDs on
E-Exposure
Exposure is used in Manual Style only (2P), and allows you to set the exposure time. This is similar to setting a shutter speed on a camera. The exposure time determines how long the 8680i takes to record an image. On a bright day, exposure times can be very short because plenty of light is available to help record an image. At nighttime, exposure time can increase dramatically due to the near absence of light. Units are 127 microseconds. $($ Default $=7874)$
nE Range: 1-7874

Example: Exposure at 7874E with fluorescent lighting:

Exposure at 100E with fluorescent lighting:

Gain is used in Manual Style only (2P). Like a volume control, the gain modifier boosts the signal and multiplies the pixel value. As you increase the gain, the noise in an image is also amplified.

1G	No gain (default)
2G	Medium gain
4G	Heavy gain
8G	Maximum gain

Example:
Gain at 1G:

Gain at 4G:

Gain at 8G:

W - Target White Value

Sets the target for the median grayscale value in the captured image. For capturing close-up images of high contrast documents, a lower setting, such as 75 , is recommended. Higher settings result in longer exposure times and brighter images, but if the setting is too high, the image may be overexposed. Target White Value is only available when using Photo Style (1P). (Default = 125)
nW Range: 0-255

Example: White Value at 75W: White Value at 125W: White Value at 200W:

D - Delta for Acceptance

This sets the allowable range for the white value setting (see W - Target White Value). Delta is only available when using Photo Style (1P). (Default = 25)
nD Range: 0-255

U - Update Tries

This sets the maximum number of frames the 8680 i should take to reach the $D-$ Delta for Acceptance. Update Tries is only available when using Photo Style (1P). (Default = 6)
nU Range: 0-10

\% - Target Set Point Percentage

Sets the target point for the light and dark values in the captured image. A setting of 75% means 75% of the pixels are at or below the target white value, and 25% of the pixels are above the target white value. Altering this setting from the default is not recommended under normal circumstances. To alter grayscale values, W Target White Value should be used. (Default = 50)
n\% Range: 1-99
Example:

Target Set Point Percentage at 97\%:	Target Set Point Percentage at 50\%:	Target Set Point Percentage at 40\%:
scing elit. Curabitur massa. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec sit amet, consectetuer adipiscing elit. Donec		Lorem ipsum dolor sit amet, consectetuer adip scing elit. Curabitur massa. Lorem ipsum dole interdum volupat arcu. Proin sed turpis. Do

Step 2 - Ship a Picture Using IMGSHP

Image Ship - IMGSHP

An image is taken whenever the trigger is pressed or when the Image Snap (IMGSNP) command is processed. The last image is always stored in memory. You can "ship" the image by using the IMGSHP command.

The image ship commands have many different modifiers that can be used to change the look of the image output. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGSHP command.

Example: You can use the following command to snap and ship a bitmap image with gamma correction and document image filtering: IMGSNP;IMGSHP8F75K26U

IMGSHP Modifiers

A - Infinity Filter

Enhances pictures taken from very long distances (greater than 10 feet or 3 m). The Infinity Filter should not be used with IMGSNP Modifiers (page 170).

OA Infinity filter off (default)
1A Infinity filter on

Example: Infinity Filter off (OA) nfinity Filter on (1A)
from approximately 12 feet (3.66m) away:
from approximately 12 feet (3.66m) away:

C-Compensation

Flattens the image to account for variations in illumination across the image.
OC Compensation disabled (default)
1C Compensation enabled
Example:

Compensation at 0C:

Compensation at 1C:

D - Pixel Depth

Indicates the number of bits per pixel in the transmitted image (KIM or BMP format only).

8D 8 bits per pixel, grayscale image (default)
1D 1 bit per pixel, black and white image

E-Edge Sharpen

An edge sharpen filter cleans up the edges of an image, making it look cleaner and sharper. While edge sharpening does make the image look cleaner, it also removes some fine detail from the original image. The strength of the edge sharpen filter can be entered from 1 to 24 . Entering a 23E gives the sharpest edges, but also increases noise in the image.

OE Don't sharpen image (default)
14E Apply edge sharpen for typical image
ne Apply edge sharpen using strength $n(n=1-24)$

Example:
Sharpen at OE:

Edge Sharpen at 24E:

F - File Format

Indicates the desired format for the image.
OF KIM format
1F TIFF binary
2F TIFF binary group 4, compressed
3F TIFF grayscale
4F Uncompressed binary (upper left to lower right, 1 pixel/bit, 0 padded end of line)

5F Uncompressed grayscale (upper left to lower right, bitmap format)
6F JPEG image (default)
8F BMP format (lower right to upper left, uncompressed)
10F TIFF color compressed image
11F TIFF color uncompressed image
12F JPEG color image
14F BMP color format
15F BMP Uncompressed raw image

H - Histogram Stretch

Increases the contrast of the transmitted image. Not available with some image formats.
$\mathrm{OH} \quad$ No stretch (default)
1H Histogram stretch

Example:
Histogram Stretch at OH :

Histogram Stretch at 1H:

I- Invert Image

Invert image is used to rotate the image around the X or Y axis.
1ix Invert around the X axis (flips picture upside down)
1iy Invert around the Y axis (flips picture left to right)
Example:

Image not inverted:
Image with Invert Image set to 1ix:

Image with Invert Image set to 1iy:

IF- Noise Reduction

Used to reduce the salt and pepper noise in an image.
Oif No salt and pepper noise reduction (default)
1if Salt and pepper noise reduction

Example:
Noise Reduction Off (Oif):

Noise Reduction On (1if):

Oir Image as snapped (rightside up) (default)
1ir Rotate image 90 degrees to the right
2ir Rotate image 180 degrees (upside down)
3ir Rotate image 90 degrees to the left
Example:

Image Rotate set to Oir:

Image Rotate set to 1ir:

Image Rotate set to 2ir:

Image Rotate set to 3ir:

J - JPEG Image Quality

Sets the desired quality when the JPEG image format is selected. Higher numbers result in higher quality, but larger files. Smaller numbers result in greater amounts of lossy compression, faster transmission times, lower quality, but smaller files.
(Default = 50)
nJ Image is compressed as much as possible while preserving quality factor of $n(n=0-100)$

OJ worst quality (smallest file)
100J best quality (largest file)

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50 K .

OK Gamma correction off (default)
50K Apply gamma correction for brightening typical document image
nK Apply gamma correction factor $n(n=0-1,000)$

Example:

Gamma Correction set to 50K:

Gamma Correction set to 255K:

L, R, T, B, M - Image Cropping

Ships a window of the image by specifying the left, right, top, and bottom pixel coordinates. Device columns are numbered 0 through 1279, and device rows are numbered 0 through 959.
$n L \quad$ The left edge of the shipped image corresponds to column n of the image in memory. Range: 000-843. (Default =0)
$n \mathrm{R}$ The right edge of the shipped image corresponds to column n-1 of the image in memory. Range: 000-843. (Default = all columns)
$n T \quad$ The top edge of the shipped image corresponds to row n of the image in memory. Range: 000-639. (Default $=0$)
$n B \quad$ The bottom edge of the shipped image corresponds to row $n-1$ of the image in memory. Range: 000-639. (Default = all rows)

Example:

Uncropped Image:

Image Crop set to 200B:

Image Crop set to 300R:

Image Crop set to 300L:

Image Crop set to 200T:

Alternately, specify the number of pixels to cut from the outside margin of the image; thus only the center pixels are transmitted.
$n M \quad$ Margin: cut n columns from the left, $n+1$ columns from the right, n rows from the top, and $n+1$ rows from the bottom of the image. Ship the remaining center pixels. Range: 0-238.
(Default $=0$, or full image)
Example: Image Crop set to 238 M :

P- Protocol

Used for shipping an image. Protocol covers two features of the image data being sent to the host. It addresses the protocol used to send the data (Hmodem, which is an Xmodem 1 K variant that has additional header information), and the format of the image data that is sent.

OP None (raw data)
2P None (default for USB)
3P Hmodem compressed (default for RS232)
4P Hmodem

S-Pixel Ship

Pixel Ship sizes an image in proportion to its original size. It decimates the image by shipping only certain, regularly spaced pixels.

Example: 4S would transmit every fourth pixel from every fourth line.

The smaller number of pixels shipped, the smaller the image, however, after a certain point the image becomes unusable.

1S ship every pixel (default)
2S ship every $2 n d$ pixel, both horizontally and vertically
3S ship every 3rd pixel, both horizontally and vertically

Example:

Pixel Ship set to 1S:

Pixel Ship set to 2S:

Pixel Ship set to 4S:

U - Document Image Filter

Allows you to input parameters to sharpen the edges and smooth the area between the edges of text in an image. This filter typically provides better JPEG compression than the standard E-Edge Sharpen command (see page 182). This filter also works well when shipping pure black and white images (1 bit per pixel). The optimal setting is 26 U .

OU Document image filter off (default)
26 U Apply document image filter for typical document image
$n \mathrm{U} \quad$ Apply document image filter using grayscale threshold n. Use lower numbers when the image contrast is lower. $1 U$ will have a similar effect to setting E - Edge Sharpen (page 175) to 22e. Range: 0-255.

Example: Document Image Filter set to OU: Document Image Filter set to 26U:

Smooths transitions by averaging the pixels next to the hard edges of defined lines and shaded areas in an image.

OV Don't blur (default)
1V Blur
Example:
Blur Image Off (OV):

Blur Image On (1V):

W - Histogram Ship

A histogram gives a quick picture of the tonal range of an image, or key type. A lowkey image has detail concentrated in the shadows; a high-key image has detail concentrated in the highlights; and an average-key image has detail concentrated in the midtones. This modifier ships the histogram for an image.

OW Don't ship histogram (default)
1W Ship histogram

Example: Image used for histogram:

Histogram of image:

Image Size Compatibility

If you have applications that expect an image ship to return exactly 640×480 pixels, scan the Force VGA Resolution bar code. Default = Native Resolution.

Force VGA Resolution

* Native Resolution

Intelligent Signature Capture - IMGBOX

IMGBOX allows you to configure the size and location of a signature capture area relative to its proximity to a bar code. This allows you to tailor a signature capture area to a specific form. In order to use IMGBOX, you need a set form where the signature box location is in a known location relative to a bar code. You can input the overall size of the signature area, as well as specify how far the signature area is from the bar code, vertically and horizontally. You can also set the resolution and file format for the final output of the signature capture image.

Note: IMGBOX commands can only be triggered by one of the following types of bar codes: PDF417, Code 39, Code 128, Aztec, Codabar, and Interleaved 2 of 5. Once one of these symbologies has been read, the image is retained for a possible IMGBOX command.

Signature Capture Optimize

If you will be using your 8680i to capture signatures frequently, you should optimize it for this purpose. However, the speed of scanning bar codes may be slowed when this mode is enabled. Default = Off.

Optimize On

Below is an example of a signature capture application. In this example, the aiming pattern is centered over the signature capture area and the trigger is pressed. A single beep is emitted, indicating that the 8680i has read a Code 128 bar code and the data has been transferred to the host. An IMGBOX command may now be sent from the host to specify the coordinates of the signature capture area below that code, and indicating that only that area containing the signature should be transferred as an image to the host.

To see this example, align the aiming pattern with the signature area (not with the bar code), then press the trigger.

Signature Capture \&rea

Send the following IMGBOX command string after the trigger press:
Example: IMGBOX245w37h55y.
Note: Case is not important in the command string. It is used here only for clarity.
The following image is captured:

Signature Caphere Anea

The IMGBOX commands have many different modifiers that can be used to change the size and appearance of the signature image output by the 8680i. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGBOX command.

Note: The IMGBOX command returns a NAK unless a window size (width and height) are specified. See H-Height of Signature Capture Area (page 186) and W - Width of Signature Capture Area (page 187).

IMGBOX Modifiers

A - Output Image Width

This option is used to size the image horizontally. If using this option, set the resolution (R) to zero.

Example: Image Width set to 200A:

Image Width set to 600A:
Signature Capture Area

B - Output Image Height

This option is used to size the image vertically. If using this option, set the resolution (R) to zero.

Example:

Image Height set to 50B:

Signature Capture Area

Image Height set to 100B:
Signature Capture Area

D - Pixel Depth
This indicates the number of bits per pixel in the transmitted image, which defines whether it will be grayscale or black and white.

8D 8 bits per pixel, grayscale image (default)
1D 1 bit per pixel, black and white image

F - File Format

This option indicates the type of file format in which to save the image.

$$
\begin{array}{ll}
\text { OF } & \text { KIM format } \\
1 F & \text { TIFF binary } \\
2 F & \text { TIFF binary group 4, compressed } \\
3 F & \text { TIFF grayscale } \\
4 F & \text { Uncompressed Binary } \\
5 F & \text { Uncompressed grayscale } \\
6 F & \text { JPEG image (default) } \\
7 F & \text { Outlined image } \\
8 F & \text { BMP format }
\end{array}
$$

H - Height of Signature Capture Area

The height of the signature capture area must be measured in inches divided by .01. In the example, the height of the area to be captured is $3 / 8$ inch, resulting in a value of $\mathrm{H}=.375 / 0.01=37.5$.

Example: IMGBOX245w37h55y.

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50K.

OK Gamma correction off (default)

50K Apply gamma correction for brightening typical document image
$n K \quad$ Apply gamma correction factor $n(n=1-255)$

Example: Gamma Correction set to OK:

Gamma Correction set to 50K:

```
        Signature Caphure Area
```

Gamma Correction set to 255K:

Sipnature Copture dwa

R - Resolution of Signature Capture Area

The resolution is the number of pixels that the 8680 i outputs per each minimum bar width. The higher the value for R, the higher the quality of the image, but also the larger the file size. Values begin at 1000. The 8680i automatically inserts a
decimal point between the first and second digit. For example, use 2500 to specify a resolution of 2.5. Set to zero when using the A and B modifiers (see A - Output Image Width and B - Output Image Height on page 185).

Example: Resolution set to OR:

Resolution set to 1000R:

```
    Signature Caphure Awa
```

Resolution set to 2000R:

Signature Caphure Area

S - Bar Code Aspect Ratio

All dimensions used in IMGBOX are measured as multiples of the minimum element size of the bar code. The bar code aspect ratio allows you to set the ratio of the bar code height to the narrow element width. In the example, the narrow element width is .010 inches and the bar code height is 0.400 inches, resulting in a value of $S=0.4 / 0.01=40$.

W - Width of Signature Capture Area

The width of the signature capture area must be measured in inches divided by .01 . In the example, the width of the area to be captured is 2.4 inches, resulting in a value of $\mathrm{W}=2.4 / 0.01=240$. (A value of 245 was used in the example to accommodate a slightly wider image area.)

Example: IMGBOX245w37h55y.

X - Horizontal Bar Code Offset

The horizontal bar code offset allows you to offset the horizontal center of the signature capture area. Positive values move the horizontal center to the right and negative values to the left. Measurements are in multiples of the minimum bar width.

Horizontal Offset set to 75X:
tire Caphure Ava
Horizontal Offset set to -75X:
Signature Capture A

Y - Vertical Bar Code Offset

The vertical bar code offset allows you to offset the vertical center of the signature capture area. Negative numbers indicate that the signature capture is above the bar code, and positive numbers indicate that the area is below the bar code. Measurements are in multiples of the minimum bar width

Vertical Offset set to -7Y:
$\qquad\|\mid$
Vertical Offset set to $65 \mathrm{Y}:$
Signature Caphere Avea

RF Default Imaging Device

The 8680i supports imaging command processing (IMGSHP, IMGSNP, IMGBOX) so that EZConfig-Scanning (see page 191) and other applications are able to perform imaging functions as if they were communicating directly with the 8680i. To accomplish this, the 8680i uses a menu command called RF_DID (RF Default Imaging Device). RF_DID is the name of the 8680i (BT_NAM) that is to receive imaging commands. The default for RF_DID is "*"indicating that imaging commands are to be sent to all associated 8680is. Change this setting to RF_DIDdevice_name to ensure that they are sent to a particular 8680i. Refer to Scanner Report on page 41 to generate a report containing the port, 8680i name, and address for each 8680 i. Refer to Device Name on page 51 set a unique name for each 8680i.

UTILITIES

Add a Test Code I.D. Prefix to All Symbologies

This selection allows you to turn on transmission of a Code I.D. before the decoded symbology. (See the Symbology Charts, beginning on page 239 for the single character code that identifies each symbology.) This action first clears all current prefixes, then programs a Code I.D. prefix for all symbologies. This is a temporary setting that is removed when the unit is power cycled.

Add Code I.D. Prefix to
All Symbologies (Temporary)

Show Software Revision

Scan the bar code below to output the current software revision, unit serial number, and other product information for the 8680 i .

Test Menu

When you scan the Test Menu On code, then scan a programming code in this manual, the 8680i displays the content of a programming code. The programming function still occurs, but in addition, the content of that programming code is output to the terminal.

Note: This feature should not be used during normal 8680i operation.

TotalFreedom

TotalFreedom is an open system architecture that makes it possible for you create applications that reside on your 8680i. Decoding apps and Data Formatting apps can be created using TotalFreedom. For further information about TotalFreedom, go to our website at www.honeywellaidc.com.

Application Plug-Ins (Apps)

Any apps that you are using can be turned off or on by scanning the following bar codes. Apps are stored in groups: Decoding and Formatting. You can enable and disable these groups of apps by scanning that group's On or Off bar code below. You can also scan the List Apps bar code to output a list of all your apps.

* Decoding Apps On

PLGDCE0.
Decoding Apps Off

* Formatting Apps On

Note: You must reset your device in order for the apps setting to take effect.

EZConfig-Scanning Introduction

EZConfig-Scanning provides a wide range of PC-based programming functions that can be performed on the 8680i connected to your PC. EZConfig-Scanning allows you to download upgrades to the 8680i's firmware, change programmed parameters, and create and print programming bar codes. Using EZConfigScanning, you can even save/open the programming parameters for the 8680i. This saved file can be e-mailed or, if required, you can create a single bar code that contains all the customized programming parameters and mail or fax that bar code to any location. Users in other locations can scan the bar code to load in the customized programming. See Configure the 8680i with EZConfig for Scanning to set up EZConfig-Scanning on your device.

Reset the Factory Defaults

Caution: This selection erases all your settings and resets the 8680i to the original factory defaults. It also disables all plugins.

If you aren't sure what programming options are in your 8680i, or you've changed some options and want to restore the 8680i to factory default settings, first scan the Remove Custom Defaults bar code, then scan Activate Defaults. This resets the 8680 i to the factory default settings.

Activate Defaults

Note: The 8680i resets and becomes unlinked from the host after using the Defaults commands. See Auto Reconnect Mode on page 38 to relink the 8680i.

The Menu Commands, beginning on page 197 list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

SERIAL PROGRAMMING COMMANDS

The serial programming commands can be used in place of the programming bar codes. Both the serial commands and the programming bar codes program the 8680i. For complete descriptions and examples of each serial programming command, refer to the corresponding programming bar code in this manual.

The following commands can be sent via a PC COM port using terminal emulation software.

Conventions

The following conventions are used for menu and query command descriptions: parameter A label representing the actual value you should send as part of a command.
[option] An optional part of a command.
\{Data\} Alternatives in a command.
bold Names of menus, menu commands, buttons, dialog boxes, and windows that appear on the screen.

Menu Command Syntax

Menu commands have the following syntax (spaces have been used for clarity only): Prefix Tag SubTag \{Data\} [, SubTag \{Data\}] [; Tag SubTag \{Data\}] [...] Storage

Prefix Three ASCII characters: SYN M CR (ASCII 22,77,13).
Tag A 3 character case-insensitive field that identifies the desired menu command group.

SubTag A 3 character case-insensitive field that identifies the desired menu command within the tag group.

Data The new value for a menu setting, identified by the Tag and SubTag.

$$
\begin{array}{ll}
\text { Storage } & \text { A single character that specifies the storage table to which the } \\
\text { command is applied. An exclamation point (!) performs the } \\
\text { command's operation on the device's volatile menu configuration } \\
\text { table. A period (.) performs the command's operation on the device's } \\
\text { non-volatile menu configuration table. Use the non-volatile table } \\
\text { only for semi-permanent changes you want saved through a power } \\
\text { cycle. }
\end{array}
$$

Query Commands

Several special characters can be used to query the device about its settings.
$\wedge \quad$ What is the default value for the setting(s).
? What is the device's current value for the setting(s).

* What is the range of possible values for the setting(s). (The device's response uses a dash (-) to indicate a continuous range of values. A pipe (l) separates items in a list of non-continuous values.)

Tag Field Usage

When a query is used in place of a Tag field, the query applies to the entire set of commands available for the particular storage table indicated by the Storage field of the command. In this case, the SubTag and Data fields should not be used because they are ignored by the device.

SubTag Field Usage

When a query is used in place of a SubTag field, the query applies only to the subset of commands available that match the Tag field. In this case, the Data field should not be used because it is ignored by the device.

Data Field Usage

When a query is used in place of the Data field, the query applies only to the specific command identified by the Tag and SubTag fields.

Concatenation of Multiple Commands

Multiple commands can be issued within one Prefix/Storage sequence. Only the Tag, SubTag, and Data fields must be repeated for each command in the sequence. If additional commands are to be applied to the same Tag, then the new command sequence is separated with a comma (,) and only the SubTag and Data fields of the additional command are issued. If the additional command requires a different Tag field, the command is separated from previous commands by a semicolon (;).

The device responds to serial commands with one of three responses:
ACK Indicates a good command which has been processed.
ENQ Indicates an invalid Tag or SubTag command.
NAK Indicates the command was good, but the Data field entry was out of the allowable range for this Tag and SubTag combination, e.g., an entry for a minimum message length of 100 when the field will only accept 2 characters.

When responding, the device echoes back the command sequence with the status character inserted directly before each of the punctuation marks (the period, exclamation point, comma, or semicolon) in the command.

Examples of Query Commands

In the following examples, a bracketed notation [] depicts a non-displayable response.

Example: What is the range of possible values for Codabar Coding Enable?

Enter: cbrena*.

Response: CBRENAO-1[ACK]
This response indicates that Codabar Coding Enable (CBRENA) has a range of values from 0 to 1 (off and on).

Example: What is the default value for Codabar Coding Enable?

Enter: cbrena^.

Response: CBRENA1[ACK]

This response indicates that the default setting for Codabar Coding Enable (CBRENA) is 1 , or on.

Example: What is the device's current setting for Codabar Coding Enable?

Enter: cbrena?

Response: CBRENA1[ACK]

This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1 , or on.

Example: What are the device's settings for all Codabar selections?
Enter: cbr?.

Response: CBRENA1[ACK], SSXO[ACK], CK20[ACK], CCT1[ACK], MIN2[ACK], MAX60[ACK], DFT[ACK].

This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1 , or on;
the Start/Stop Character (SSX) is set to 0, or Don't Transmit; the Check Character (CK2) is set to 0 , or Not Required; concatenation (CCT) is set to 1 , or Enabled; the Minimum Message Length (MIN) is set to 2 characters; the Maximum Message Length (MAX) is set to 60 characters; and the Default setting (DFT) has no value.

Trigger Commands

You can activate and deactivate the 8680i with serial trigger commands. First, the 8680i must be put in Manual Trigger Mode by scanning a Manual Trigger Mode bar code (page 60), or by sending a serial menu command for triggering (page 61). Once the 8680i is in serial trigger mode, the trigger is activated and deactivated by sending the following commands:

Activate: SYN T CR
Deactivate: SYN U CR
The 8680i scans until a bar code has been read, until the deactivate command is sent, or until the serial time-out has been reached (see "Read Time-Out" on page 361 for a description, and the serial command on page 203).

Reset the Custom Defaults

If you want the custom default settings restored to your 8680i, scan the Activate Custom Defaults bar code below. This resets the 8680i to the custom default settings. If there are no custom defaults, it resets the 8680i to the factory default settings. Any settings that have not been specified through the custom defaults are defaulted to the factory default settings.

Activate Custom Defaults
Note: This bar code also causes both the 8680i and the host to perform a reset and become unlinked.

The charts on the following pages list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

Menu Commands

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Get Started			
Screen Display Settings			
Setting/Serial Command:	*Display Off	GUIINFO	16
	Display Wi-Fi IP Address	GUIINF1	16
	Display Firmware Version	GUIINF2	16
	Display Wi-Fi MAC Address	GUIINF3	16
	Display Bluetooth MAC Address	GUIINF4	16
	*lcon Bar Off	GUIICNO	16
	Icon Bar On	GUIICN1	16
Pair the 8680i with Bluetooth Devices			
Pair with a PC or Laptop Bluetooth Serial Port	Host Reconnect Mode	PAPSPP;BT_DNG1	17
Pair with a PC or Laptop Bluetooth HID Keyboard Mode	* Bluetooth HID Keyboard Connect	PAPBTH	17
	Bluetooth HID Japanese Keyboard Connect	PAPJKB	17
Set Keyboard Country Layout	*United States	KBDCTYO	18
	Albania	KBDCTY35	18
	Azeri (Cyrillic)	KBDCTY81	18
	Azeri (Latin)	KBDCTY80	18
	Belarus	KBDCTY82	18
	Belgium	KBDCTY1	18
	Bosnia	KBDCTY33	18
	Brazil	KBDCTY16	19
	Brazil (MS)	KBDCTY59	19
	Bulgaria (Cyrillic)	KBDCTY52	19
	Bulgaria (Latin)	KBDCTY53	19
	Canada (French legacy)	KBDCTY54	19
	Canada (French)	KBDCTY18	19
	Canada (Multilingual)	KBDCTY55	19

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Set Keyboard Country Layout (Continued)	Croatia	KBDCTY32	19
	Czech	KBDCTY15	19
	Czech (Programmers)	KBDCTY40	19
	Czech (QWERTY)	KBDCTY39	19
	Czech (QWERTZ)	KBDCTY38	19
	Denmark	KBDCTY8	20
	Dutch (Netherlands)	KBDCTY11	20
	Estonia	KBDCTY41	20
	Faroese	KBDCTY83	20
	Finland	KBDCTY2	20
	France	KBDCTY3	20
	Gaelic	KBDCTY84	20
	Germany	KBDCTY4	20
	Greek	KBDCTY17	20
	Greek (220 Latin)	KBDCTY64	20
	Greek (220)	KBDCTY61	20
	Greek (319 Latin)	KBDCTY65	20
	Greek (319)	KBDCTY62	21
	Greek (Latin)	KBDCTY63	21
	Greek (MS)	KBDCTY66	21
	Greek (Polytonic)	KBDCTY60	21
	Hebrew	KBDCTY12	21
	Hungarian (101 key)	KBDCTY50	21
	Hungary	KBDCTY19	21
	Iceland	KBDCTY75	21
	Irish	KBDCTY73	21
	Italian (142)	KBDCTY56	21
	Italy	KBDCTY5	21
	Japan ASCII	KBDCTY28	21
	Kazakh	KBDCTY78	22
	Kyrgyz (Cyrillic)	KBDCTY79	22
	Latin America	KBDCTY14	22
	Latvia	KBDCTY42	22
	Latvia (QWERTY)	KBDCTY43	22
	Lithuania	KBDCTY44	22
	Lithuania (IBM)	KBDCTY45	22
	Macedonia	KBDCTY34	22

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Set Keyboard Country Layout (Continued)	Malta	KBDCTY74	22
	Mongolian (Cyrillic)	KBDCTY86	22
	Norway	KBDCTY9	22
	Poland	KBDCTY20	22
	Polish (214)	KBDCTY57	23
	Polish (Programmers)	KBDCTY58	23
	Portugal	KBDCTY13	23
	Romania	KBDCTY25	23
	Russia	KBDCTY26	23
	Russian (MS)	KBDCTY67	23
	Russian (Typewriter)	KBDCTY68	23
	SCS	KBDCTY21	23
	Serbia (Cyrillic)	KBDCTY37	23
	Serbia (Latin)	KBDCTY36	23
	Slovakia	KBDCTY22	23
	Slovakia (QWERTY)	KBDCTY49	23
	Slovakia (QWERTZ)	KBDCTY48	24
	Slovenia	KBDCTY31	24
	Spain	KBDCTY10	24
	Spanish variation	KBDCTY51	24
	Sweden	KBDCTY23	24
	Switzerland (French)	KBDCTY29	24
	Switzerland (German)	KBDCTY6	24
	Tatar	KBDCTY85	24
	Turkey F	KBDCTY27	24
	Turkey Q	KBDCTY24	24
	Ukrainian	KBDCTY76	24
	United Kingdom	KBDCTY7	25
	United States (Dvorak)	KBDCTY87	25
	United States (Dvorak left)	KBDCTY88	25
	United States (Dvorak right)	KBDCTY89	25
	Untied States (International)	KBDCTY30	25
	Uzbek (Cyrillic)	KBDCTY77	25
Pair with Bluetooth Low Energy (BLE) Devices	HID BLE Connect	PAPLEH	25
	Serial BLE Connect	PAPBLE	25
NFC Mode (Tap and Pair) for Android ${ }^{\text {TM }}$ Devices	*NFC Off	BT_NFCO	26
	NFC On	BT_NFC1	26

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
NFC Mode (Tap and Pair) for Android ${ }^{\text {TM }}$ Devices (Continued)	Bluetooth Serial Port Profile Connect	BT_TRMO,DNG4.	26
	Bluetooth HID Keyboard Connect	PAPBTH.	26
Pair with an Android, Apple or Windows Mobile Device: HID Keyboard Mode	Bluetooth HID Keyboard Connect	PAPBTH	26
	Bluetooth HID Japanese Keyboard Connect	PAPJKB	26
Enter a Bluetooth PIN	Bluetooth PIN Code	BT_PIN\#	27
Pair with a Honeywell Vehicle Mount or Dolphin CT40 or CT60 Mobile Computer	Bluetooth Serial Port Profile Connect	BT_TRMO,DNG4.	30
	Bluetooth HID Keyboard Connect	PAPBTH.	30
Pair with a Zebra ${ }^{\text {® }}$ Device	Bluetooth Serial Port Profile Connect	BT_TRMO,DNG4.	30
	Bluetooth HID Keyboard Connect	PAPBTH.	30
Pair to a Communication and Charge Base or Access Point	CCB/AP Connect	BT_TRMO;BT_EHMO;WIDSCNO	31
	CCB/AP Disconnect	BT_EHM1,DNG1;WIDSCN1	31
Pair with a Vocollect Device	Bluetooth Serial Port Profile Connect	BT_TRMO,DNG4	31
	CR/LR Suffix	SUFBK2990DOA	31
Disconnect from the Host	Bluetooth Disconnect	BT_DNG4,ADR	32
Unpair When Charging	*Off	BT_DSCO	32
	Unpair When Charging	BT_DSC2	32
Configure the 8680i with EZConfig for Scanning	Bluetooth Connect - EZCS	PAPSPP;BT_DNG1	33
Set Custom Defaults	Set Custom Defaults	MNUCDP	35
	Save Custom Defaults	MNUCDS	35
Reset Custom Defaults	Activate Custom Defaults	DEFALT	35
Wireless System Operation			
Change a Bluetooth PIN Code	Bluetooth PIN Code	BT_PIN\#	37
Auto Reconnect Mode	*Auto Reconnect On	BT_ACM1	38
	Auto Reconnect Off	BT_ACMO	38
Maximum Link Attempts	Maximum Link Attempts (*0)	BT_MLA	39
Relink Time-Out	Relink Time-Out (Range 1-100 seconds (*3))	BT_RLT	39
Reset Scanner	Reset Scanner	RESET_	41
Scanner Report	Scanner Report	RPTSCN	41
Scanner Address	Scanner Address	BT_LDA	41
Linked Modes	Unlink Scanner	BT_RMV	42
	Override Locked Scanner	BT_RPL1	42
Out-of-Range Alarm	Scanner Alarm Duration (Range 1 $3000 \mathrm{sec}\left({ }^{*} 0\right)$)	BT_ORD	42
Alarm Sound Type	Scanner Alarm Type (*0)	BT_ORW	43

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Scanner Power Time-Out Timer	Timer (0-7200 seconds)	BT_LPTO	44
	200 Seconds	BT_LPT200	44
	400 Seconds	BT_LPT400	44
	900 Seconds	BT_LPT900	44
	*3600 Seconds	BT_LPT3600	44
	7200 Seconds	BT_LPT7200	44
Flexible Power Management	*Full Power	BT_TXP100	45
	Medium Power	BT_TXP35	45
	Medium Low Power	BT_TXP5	45
	Low Power	BT_TXP1	45
Batch Mode	Automatic Batch Mode	BATENA1	46
	*Batch Mode Off	BATENAO	46
	Inventory Batch Mode	BATENA2	46
	Persistent Batch Mode	BATENA3	46
Batch Mode Beep	Off	BATBEPO	46
	*On	BATBEP1	46
Batch Mode Storage	*Flash Storage	BATNVS1	47
	RAM Storage	BATNVSO	47
Batch Mode Quantity	*Off	BATQTYO	47
	On	BATQTY1	47
Quantity Codes	0	BATNUMO	48
	*1	BATNUM1	48
	2	BATNUM2	48
	3	BATNUM3	48
	4	BATNUM4	48
	5	BATNUM5	48
	6	BATNUM6	48
	7	BATNUM7	49
	8	BATNUM8	49
	9	BATNUM9	49
Batch Mode Output Order	*FIFO	BATLIFO	49
	LIFO	BATLIF1	49
Total Records	Total Records	BATNRC	49
Delete Last Code	Delete Last Code	BATUND	49
Clear All Codes	Clear All Codes	BATCLR	50
Transmit Records to Host	Transmit Inventory Records	BAT_TX	50

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Batch Mode Transmit Delay	*Off	BATDLYO	50
	Short (ms)	BATDLY250	50
	Medium (ms)	BATDLY500	50
	Long (ms)	BATDLY1000	50
Scanner Name	Name 1-7	BT_NAM\#\#\#\#\#	51
	Reset	RESET_	52
	Scanner Name	BT_NAM	52
Host Command Acknowledgment	Host ACK On	HSTACK1	53
	*Host ACK Off	HSTACKO	53
	Host ACK Timeout (Range 1-90 seconds (*10))	HSTATO\#\#	54
Input/Output Selections			
Power Up Beeper	Power Up Beeper Off - Scanner	BEPPWRO	55
	*Power Up Beeper On - Scanner	BEPPWR1	55
Beep on BEL Character	Beep on BEL On	BELBEP1	55
	*Beep on BEL Off	BELBEPO	55
Trigger Click	On	BEPTRG1	56
	*Off	BEPTRGO	56
Beeper - Good Read	Off	BEPBEPO	56
	*On	BEPBEP1	56
Beeper Volume - Good Read	Off	BEPLVLO	56
	Low	BEPLVL1	56
	Medium	BEPLVL2	56
	*High	BEPLVL3	57
Beeper Pitch - Good Read (Frequency)	Low (1600) (min 400Hz)	BEPFQ11600	57
	*Medium (2700 Hz)	BEPFQ12700	57
	High (4200) (max 9000Hz)	BEPFQ14200	57
Vibrate - Good Read	Vibrate - Good Read Off	TFBGRDO	57
	*Vibrate - Good Read On	TFBGRD1	57
	Vibrate Duration	TFBDUR\#\#\#\#	58
Beeper Pitch - Error	*Razz (250) (min 200Hz)	BEPFQ2800	58
	Medium (3250)	BEPFQ23250	58
	High (4200) (max 9000Hz)	BEPFQ24200	58
Beeper Duration - Good Read	*Normal Beep	BEPBIPO	58
	Short Beep	BEPBIP1	58
LED - Good Read	Off	BEPLEDO	59
	*On	BEPLED1	59
Number of Beeps - Good Read	Range 1-9 **1)	BEPRPT\#	59

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Number of Beeps - Error	Range 1-9 (*1)	BEPERR\#	59
Good Read Delay	*No Delay	DLYGRDO	60
	Short Delay (500 ms)	DLYGRD500	60
	Medium Delay (1000 ms)	DLYGRD1000	60
	Long Delay (1500 ms)	DLYGRD1500	60
User-Specified Good Read Delay	Range 0-30,000 ms	DLYGRD\#\#\#\#\#	60
Manual Trigger Modes	*Manual Trigger - Normal	PAPHHF	60
	Manual Trigger - Enhanced	PAPHHS	61
Serial Trigger Mode	Read Time-Out ($0-300,000 \mathrm{~ms}$) *30,000	TRGSTO\#\#\#\#	61
Object Detection Mode	Short Range	TRGMOT9;AOSRNG1	61
	Mid Range	TRGMOT9;AOSRNG2	61
	*Long Range	TRGMOT9;AOSRNG3	61
Object Detection Deactivation	*Off	AOSTIMO	62
	Quick Press	AOSTIM10	62
	2 Second Press	AOSTIM2000	62
Object Detection Trigger Hold	*Off	TRGHTOO	62
	1 Second Hold	TRGHTO1000	62
Poor Quality Codes	Poor Quality 1D Reading On	DECLDI1	63
	*Poor Quality 1D Reading Off	DECLDIO	63
	Poor Quality PDF Reading On	PDFXPR1	63
	*Poor Quality PDF Reading Off	PDFXPRO	63
Illumination Lights	*Lights On	SCNLED1	64
	Lights Off	SCNLEDO	64
Aimer Delay	200 milliseconds	SCNDLY200	64
	400 milliseconds	SCNDLY400	64
	*Off (no delay)	SCNDLYO	64
	User-Specified Aimer Delay Range 0-4,000 ms	SCNDLY\#\#\#\#	64
Aimer Mode	Off	SCNAIMO	65
	*Interlaced	SCNAIM2	65
Centering	Single Code Centering	DECWIN1;DECTOP49;DECBO T51;DECRGT51;DECLFT49.	65

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Custom Centering	Centering On	DECWIN1	66
	*Centering Off	DECWINO	66
	Left of Centering Window (*40\%)	DECLFT\#\#\#	67
	Right of Centering Window (*60\%)	DECRGT\#\#\#	67
	Top of Centering Window (*40\%)	DECTOP\#\#\#	66
	Bottom of Centering Window (*60\%)	DECBOT\#\#\#	66
ALT Mode	*Off	KBDALTO	67
	4 Characters	KBDALT7	67
Keyboard Modifiers	*Control + X Off	KBDCASO	68
	DOS Mode Control + X	KBDCAS1	68
	Windows Mode Control + X	KBDCAS2	68
	Windows Mode Prefix/Suffix Off	KBDCAS3	68
Preferred Symbology	On	PRFENA1	68
	*Off	PRFENAO	69
	High Priority Symbology	PRFCOD\#\#	69
	Low Priority Symbology	PRFBLK\#\#	69
	Preferred Symbology Timeout (*500) Range 100-3000	PRFPTO\#\#\#\#	69
	Preferred Symbology Default	PRFDFT	70
Output Sequence Editor	Enter Sequence	SEQBLK	74
Partial Sequence	*Discard Partial Sequence	SEQTTSO	76
	Default Sequence	SEQDFT	76
Require Output Sequence	Required	SEQ_EN2	76
	On/Not Required	SEQ_EN1	76
	*Off	SEQ_ENO	76
Good Read Tone - Output Sequences	Good Read Beep - Each Code in Sequence	BEPSINO	77
	*Good Read Click - Each Code in Sequence	BEPSIN1	77
	Good Read Beep - Partial Sequence Output	BEPISEO	77
	*Error Tone - Partial Sequence Output	BEPISE1	77
Multiple Symbols	On	SHOTGN1	77
	*Off	SHOTGNO	77
No Read	On	SHWNRD1	78
	*Off	SHWNRDO	78

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Video Reverse	Video Reverse Only	VIDREV1	78
	Video Reverse and Standard Bar Codes	VIDREV2	78
	*Video Reverse Off	VIDREVO	79
Working Orientation	*Upright	ROTATNO	79
	Vertical, Bottom to Top (Rotate CCW 90)	ROTATN1	79
	Upside Down	ROTATN2	79
	Vertical, Top to Bottom (Rotate CW 90)	ROTATN3	79
Prefix/Suffix Selections			
Add CR Suffix to All Symbologies		VSUFCR	83
Prefix	Add Prefix	PREBK2\#\#	83
	Clear One Prefix	PRECL2	83
	Clear All Prefixes	PRECA2	83
Suffix	Add Suffix	SUFBK2\#\#	84
	Clear One Suffix	SUFCL2	84
	Clear All Suffixes	SUFCA2	84
Function Code Transmit	*Enable	RMVFNCO	84
	Disable	RMVFNC1	84
Intercharacter Delay	Range 0-5000 (5ms increments)	DLYCHR\#\#	85
User Specified Intercharacter Delay	Delay Length 0-5000 (5 ms increments)	DLYCRX\#\#	85
	Character to Trigger Delay	DLY_XX\#\#	85
Interfunction Delay	Range 0-5000 (5ms increments)	DLYFNC\#\#	86
Intermessage Delay	Range 0-5000 (5ms increments)	DLYMSG\#\#	86
Data Formatter Selections			
Data Format Editor	*Default Data Format (None)	DFMDF3	88
	Show Data Format	DFMBK3?	88
	Enter Data Format	DFMBK3\#\#	89
	Clear One Data Format	DFMCL3	89
	Clear All Data Formats	DFMCA3	89
Data Formatter	Data Formatter Off	DFM_ENO	103
	*Data Formatter On, Not Required, Keep Prefix/Suffix	DFM_EN1	104
	Data Format Required, Keep Prefix/Suffix	DFM_EN2	104

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Data Formatter (Continued)	Data Formatter On, Not Required, Drop Prefix/Suffix	DFM_EN3	104
	Data Format Required, Drop Prefix/Suffix	DFM_EN4	104
Data Format Non-Match Error Tone	*Data Format Non-Match Error Tone On	DFMDECO	105
	Data Format Non-Match Error Tone Off	DFMDEC1	105
Primary/Alternate Data Formats	Primary Data Format	ALTFNMO	105
	Data Format 1	ALTFNM1	105
Primary/Alternate Data Formats	Data Format 2	ALTFNM2	105
	Data Format 3	ALTFNM3	105
Single Scan Data Format Change	Single Scan-Primary Data Format	VSAF_O	106
	Single Scan-Data Format 1	VSAF_1	106
	Single Scan-Data Format 2	VSAF_2	106
	Single Scan-Data Format 3	VSAF_3	106
Symbologies			
All Symbologies	All Symbologies Off	ALLENAO	108
Codabar	Default All Codabar Settings	CBRDFT	108
	Off	CBRENAO	108
	*On	CBRENA1	108
Codabar Start/Stop Char.	*Don't Transmit	CBRSSXO	109
	Transmit	CBRSSX1	109
Codabar Check Char.	*No Check Char.	CBRCK20	109
	Validate, But Don't Transmit	CBRCK21	109
	Validate, and Transmit	CBRCK22	109
Codabar Concatenation	*Off	CBRCCTO	110
	On	CBRCCT1	110
	Require	CBRCCT2	110
Codabar Redundancy	Range (0-10) *0	CBRVOT\#\#	110
Codabar Message Length	Minimum (2-60) *4	CBRMIN\#\#	111
	Maximum (2-60)*60	CBRMAX\#\#	111
Code 39	Default All Code 39 Settings	C39DFT	111
	Off	C39ENAO	111
	*On	C39ENA1	111

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 39 Start/Stop Char.	*Don't Transmit	C39SSX0	111
	Transmit	C39SSX1	111
Code 39 Check Char.	*No Check Char.	C39CK20	112
	Validate, But Don't Transmit	C39CK21	112
	Validate, and Transmit	C39CK22	112
Code 39 Redundancy	Range (0-10) *0	C39VOT\#\#	112
Code 39 Message Length	Minimum (0-48) *0	C39MIN\#\#	113
	Maximum (0-48)*48	C39MAX\#\#	113
Code 39 Append	*Off	C39APP0	113
	On	C39APP1	113
Code 32 Pharmaceutical (PARAF)	*Off	C39B320	113
	On	C39B321	113
Code 39 Full ASCII	*Off	C39ASC0	114
	On	C39ASC1	114
	Code 39 Code Page	C39DCP	114
Interleaved 2 of 5	Default All Interleaved 2 of 5 Settings	I25DFT	115
	Off	125ENAO	115
	*On	I25ENA1	115
Interleaved 2 of 5 Check Digit	*No Check Digit.	125CK20	115
	Validate, But Don't Transmit	I25CK21	115
	Validate, and Transmit	125CK22	115
Interleaved 2 of 5 Message Length	Minimum (2-80) *6	125MIN\#\#	116
	Maximum (2-80)*80	I25MAX\#\#	116
	*FEBRABAN Decode Off	I25PAYO	116
	FEBRABAN Decode On	I25PAY1	116
NEC 2 of 5	Default All NEC 2 of 5 Settings	N25DFT	116
	Off	N25ENAO	116
	*On	N25ENA1	116
NEC 2 of 5 Check Digit	*No Check Digit.	N25CK20	117
	Validate, But Don't Transmit	N25CK21	117
	Validate, and Transmit	N25CK22	117
NEC 2 of 5 Message Length	Minimum (2-80)*4	N25MIN\#\#	117
	Maximum (2-80)*80	N25MAX\#\#	117

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 93	Default All Code 93 Settings	C93DFT	118
	Off	C93ENAO	118
	*On	C93ENA1	118
Code 93 Message Length	Minimum (0-80) *0	C93MIN\#\#	118
	Maximum ($0-80$ * 80	C93MAX\#\#	118
Code 93 Append	On	C93APP1	118
	*Off	C93APPO	118
Code 93 Code Page	Code 93 Code Page	C93DCP	119
Straight 2 of 5 Industrial	Default All Straight 2 of 5 Industrial Settings	R25DFT	119
	*Off	R25ENAO	119
	On	R25ENA1	119
Straight 2 of 5 Industrial Message Length	Minimum (1-48)*4	R25MIN\#\#	120
	Maximum (1-48)*48	R25MAX\#\#	120
Straight 2 of 5 IATA	Default All Straight 2 of 5 IATA Settings	A25DFT	120
Straight 2 of 5 IATA	*Off	A25ENAO	120
	On	A25ENA1	120
Straight 2 of 5 IATA Redundancy	Range (0-10) *0	A25VOT\#\#	120
Straight 2 of 5 IATA Message Length	Minimum (1-48) *4	A25MIN\#\#	121
	Maximum (1-48)*48	A25MAX\#\#	121
Matrix 2 of 5	Default All Matrix 2 of 5 Settings	X25DFT	121
	*Off	X25ENAO	121
	On	X25ENA1	121
Matrix 2 of 5 Message Length	Minimum (1-80)*4	X25MIN\#\#	122
	Maximum (1-80) *80	X25MAX\#\#	122
Code 11	Default All Code 11 Settings	C11DFT	122
	*Off	C11ENAO	122
	On	C11ENA1	122
Code 11 Check Digits Required	1 Check Digit	C11CK20	122
	*2 Check Digits	C11CK21	122
Code 11 Message Length	Minimum (1-80)*4	C11MIN\#\#	123
	Maximum (1-80) *80	C11MAX\#\#	123

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 128	Default All Code 128 Settings	128DFT	123
	Off	128ENAO	123
	*On	128ENA1	123
ISBT Concatenation	*Off	ISBENAO	123
	On	ISBENA1	123
Code 128 Redundancy	Range (0-10) *10	128VOT	124
Code 128 Message Length	Minimum (0-80) *0	128MIN\#\#	124
	Maximum (0-80)*80	128MAX\#\#	124
Code 128 Append	On	128APP1	124
	*Off	128APPO	124
Code 128 Code Page	Code 128 Code Page (*2)	128DCP\#\#	125
GS1-128	Default All GS1-128 Settings	GS1DFT	125
	*On	GS1ENA1	125
	Off	GS1ENAO	125
GS1-128 Message Length	Minimum (1-80)*1	GS1MIN\#\#	126
	Maximum (0-80)*80	GS1MAX\#\#	126
Telepen	Default All Telepen Settings	TELDFT	126
	*Off	TELENAO	126
	On	TELENA1	126
Telepen Output	*AIM Telepen Output	TELOLDO	126
	Original Telepen Output	TELOLD1	126
Telepen Message Length	Minimum (1-60) *1	TELMIN\#\#	127
	Maximum (1-60)*60	TELMAX\#\#	127
UPC-A	Default All UPC-A Settings	UPBDFT	127
	Off	UPBENAO	127
	*On	UPBENA1	127
UPC-A Check Digit	Off	UPACKXO	128
	*On	UPACKX1	128
UPC-A Number System	Off	UPANSXO	128
	*On	UPANSX1	128
UPC-A 2 Digit Addenda	*Off	UPAAD20	128
	On	UPAAD21	128
UPC-A 5 Digit Addenda	*Off	UPAAD50	128
	On	UPAAD51	128

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
UPC-A Addenda Required	*Not Required	UPAARQO	129
	Required	UPAARQ1	129
UPC-A Addenda Separator	Off	UPAADSO	129
	*On	UPAADS1	129
UPC-A/EAN-13 with Extended Coupon Code	*Off	CPNENAO	130
	Allow Concatenation	CPNENA1	130
	Require Concatenation	CPNENA2	130
Coupon GS1 DataBar Output	*GS1 Output Off	CPNGS10	131
	GS1 Output On	CPNGS11	131
UPC-EO	Default All UPC-E Settings	UPEDFT	131
	Off	UPEENOO	131
	*On	UPEENO1	131
UPC-EO Expand	*Off	UPEEXPO	131
	On	UPEEXP1	131
UPC-EO Addenda Required	Required	UPEARQ1	132
	*Not Required	UPEARQO	132
UPC-EO Addenda Separator	*On	UPEADS1	132
	Off	UPEADSO	132
UPC-EO Check Digit	Off	UPECKXO	133
	*On	UPECKX1	133
UPC-EO Leading Zero	Off	UPENSXO	133
	*On	UPENSX1	133
UPC-EO Addenda	2 Digit Addenda On	UPEAD21	133
	*2 Digit Addenda Off	UPEAD20	133
	5 Digit Addenda On	UPEAD51	133
	*5 Digit Addenda Off	UPEAD50	133
UPC-E1	*Off	UPEEN10	134
	On	UPEEN11	134
EAN/JAN-13	Default All EAN/ JAN Settings	E13DFT	134
	Off	E13ENAO	134
	*On	E13ENA1	134
Convert UPC-A to EAN-13	UPC-A Converted to EAN-13	UPAENAO	134
	*Do not Convert UPC-A	UPAENA1	134
EAN/JAN-13 Check Digit	Off	E13CKX0	135
	*On	E13CKX1	135

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
EAN/JAN-13 2 Digit Addenda	2 Digit Addenda On	E13AD21	135
	*2 Digit Addenda Off	E13AD20	135
	5 Digit Addenda On	E13AD51	135
	*5 Digit Addenda Off	E13AD50	135
EAN/JAN-13 Addenda Required	*Not Required	E13ARQ0	135
	Required	E13ARQ1	135
EAN-13 Beginning with 290 Addenda Required	* Don't Require 5 Digit Addenda	ARQ2900	136
	Require 5 Digit Addenda	ARQ2901	136
EAN-13 Beginning with 378/379 Addenda Required	* Don't Require Addenda	ARQ3780	136
	Require 2 Digit Addenda	ARQ3781	136
	Require 5 Digit Addenda	ARQ3782	136
	Require 2 or 5 Digit Addenda	ARQ3783	136
EAN-13 Beginning with 414/419 Addenda Required	* Don't Require Addenda	ARQ4140	137
	Require 2 Digit Addenda	ARQ4141	137
	Require 5 Digit Addenda	ARQ4142	137
	Require 2 or 5 Digit Addenda	ARQ4143	137
EAN-13 Beginning with 434/439 Addenda Required	* Don't Require Addenda	ARQ4340	138
	Require 2 Digit Addenda	ARQ4341	138
	Require 5 Digit Addenda	ARQ4342	138
	Require 2 or 5 Digit Addenda	ARQ4343	138
EAN-13 Beginning with 977 Addenda Required	* Don't Require 2 Digit Addenda	ARQ9770	138
	Require 2 Digit Addenda	ARQ9771	138
EAN-13 Beginning with 978 Addenda Required	* Don't Require 5 Digit Addenda	ARQ9780	139
	Require 5 Digit Addenda	ARQ9781	139
EAN-13 Beginning with 979 Addenda Required	* Don't Require 5 Digit Addenda	ARQ9790	139
	Require 5 Digit Addenda	ARQ9791	139
EAN/JAN-13 Addenda Separator	Off	E13ADS0	140
	*On	E13ADS1	140
ISBN Translate	*Off	E13ISB0	141
	On	E13ISB1	141
EAN/JAN-8	Default All EAN/ JAN 8 Settings	EA8DFT	141
	Off	EA8ENAO	141
	*On	EA8ENA1	141
EAN/JAN-8 Check Digit	Off	EA8CKX0	141
	*On	EA8CKX1	141

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
EAN/JAN-8 Addenda	*2 Digit Addenda Off	EA8AD20	142
	2 Digit Addenda On	EA8AD21	142
	*5 Digit Addenda Off	EA8AD50	142
	5 Digit Addenda On	EA8AD51	142
EAN/JAN-8 Addenda Required	*Not Required	EA8ARQ0	142
	Required	EA8ARQ1	142
EAN/JAN-8 Addenda Separator	Off	EA8ADSO	143
	*On	EA8ADS1	143
MSI	Default All MSI Settings	MSIDFT	143
	*Off	MSIENAO	143
	On	MSIENA1	143
MSI Check Character	*Validate Type 10, but Don't Transmit	MSICHKO	144
	Validate Type 10 and Transmit	MSICHK1	144
	Validate 2 Type 10 Chars, but Don't Transmit	MSICHK2	144
	Validate 2 Type 10 Chars and Transmit	MSICHK3	144
	Validate Type 11 then Type 10 Char, but Don't Transmit	MSICHK4	144
	Validate Type 11 then Type 10 Char and Transmit	MSICHK5	144
	Disable MSI Check Characters	MSICHK6	144
MSI Message Length	Minimum (4-48) *4	MSIMIN\#\#	145
	Maximum (4-48)*48	MSIMAX\#\#	145
GS1 DataBar Omnidirectional	Default All GS1 DataBar Omnidirectional Settings	RSSDFT	145
	Off	RSSENAO	145
	*On	RSSENA1	145
GS1 DataBar Limited	Default All GS1 DataBar Limited Settings	RSLDFT	146
	Off	RSLENAO	146
	*On	RSLENA1	146
GS1 DataBar Expanded	Default All GS1 DataBar Expanded Settings	RSEDFT	146
	Off	RSEENAO	146
	*On	RSEENA1	146
GS1 DataBar Expanded Msg. Length	Minimum (4-74)*4	RSEMIN\#\#	146
	Maximum (4-74)*74	RSEMAX\#\#	146

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Trioptic Code	*Off	TRIENAO	147
	On	TRIENA1	147
Codablock A	Default All Codablock A Settings	CBADFT	147
	*Off	CBAENAO	147
	On	CBAENA1	147
Codablock A Msg. Length	Minimum (1-600)*1	CBAMIN\#\#\#	148
	Maximum (1-600) *600	CBAMAX\#\#\#	148
Codablock F	Default All Codablock F Settings	CBFDFT	148
	*Off	CBFENAO	148
	On	CBFENA1	148
Codablock F Msg. Length	Minimum (1-2048)*1	CBFMIN\#\#\#\#	148
	Maximum (1-2048) *2048	CBFMAX\#\#\#\#	148
Label Code	On	LBLENA1	149
	* Off	LBLENAO	149
PDF417	Default All PDF417 Settings	PDFDFT	149
	*On	PDFENA1	149
	Off	PDFENAO	149
PDF417 Msg. Length	Minimum (1-2750) *1	PDFMIN\#\#\#\#	149
	Maximum (1-2750) *2750	PDFMAX\#\#\#\#	149
MacroPDF417	*On	PDFMAC1	150
	Off	PDFMACO	150
MicroPDF417	Default All Micro PDF417 Settings	MPDDFT	150
	*On	MPDENA1	150
	Off	MPDENAO	150
MicroPDF417 Msg. Length	Minimum (1-366) *1	MPDMIN\#\#\#	151
	Maximum (1-366) *366	MPDMAX\#\#\#	151
GS1 Composite Codes	On	COMENA1	151
	*Off	COMENAO	151
UPC/EAN Version	On	COMUPC1	151
	*Off	COMUPCO	151
GS1 Composite Codes Msg. Length	Minimum (1-2435) *1	COMMIN\#\#\#\#	152
	Maximum (1-2435) *2435	COMMAX\#\#\#\#	152
GS1 Emulation	GS1-128 Emulation	EANEMU1	152
	GS1 DataBar Emulation	EANEMU2	151
	GS1 Code Expansion Off	EANEMU3	153
	EAN8 to EAN13 Conversion	EANEMU4	153
	*GS1 Emulation Off	EANEMUO	153

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
TCIF Linked Code 39	On	T39ENA1	153
	*Off	T39ENAO	153
QR Code	Default All QR Code Settings	QRCDFT	153
	*On	QRCENA1	153
	Off	QRCENAO	153
QR Code Msg. Length	Minimum (1-7089) *1	QRCMIN\#\#\#\#	154
	Maximum (1-7089) *7089	QRCMAX\#\#\#\#	154
QR Code Append	*On	QRCAPP1	154
	Off	QRCAPPO	154
QR Code Page	QR Code Page (*3)	QRCDCP\#\#	154
DotCode	Default All DotCode Settings	DOTDFT	155
	On	DOTENA1	155
	*Off	DOTENAO	155
Poor Quality DotCode	On	DOTEXS1	155
	*Off	DOTEXSO	155
DotCode Message Length	Minimum (1-2400) *1	DOTMIN\#\#\#\#	156
	Maximum (1-2400) *2400	DOTMAX\#\#\#\#	156
Data Matrix	Default All Data Matrix Settings	IDMDFT	156
	*On	IDMENA1	156
	Off	IDMENAO	156
Direct Part Marking Decoding	Dotpeen DPM Decoding	DPMENA1	156
	* Disable DPM Decoding	DPMENAO	156
	Reflective (Etched) DPM Decoding	DPMENA2	156
Data Matrix Msg. Length	Minimum (1-3116) *1	IDMMIN\#\#\#\#	157
	Maximum (1-3116) *3116	IDMMAX\#\#\#\#	157
Data Matrix Code Page	Data Matrix Code Page (*51)	IDMDCP\#\#	157
MaxiCode	Default All MaxiCode Settings	MAXDFT	158
	*On	MAXENA1	158
	Off	MAXENAO	158
MaxiCode Msg. Length	Minimum (1-150) *1	MAXMIN\#\#\#	158
	Maximum (1-150) *150	MAXMAX\#\#\#	158
Aztec Code	Default All Aztec Code Settings	AZTDFT	159
	*On	AZTENA1	159
	Off	AZTENAO	159
Aztec Code Msg. Length	Minimum (1-3832)*1	AZTMIN\#\#\#\#	159
	Maximum (1-3832) *3832	AZTMAX\#\#\#\#	159

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Aztec Append	*On	AZTAPP1	159
	Off	AZTAPPO	159
Aztec Code Page	Aztec Code Page (*51)	AZTDCP\#\#	160
Chinese Sensible (Han Xin) Code	Default All Han Xin Code Settings	HX_DFT	160
	On	HX_ENA1	160
	*Off	HX_ENAO	160
Chinese Sensible (Han Xin) Code Msg. Length	Minimum (1-7833) *1	HX_MIN\#\#\#\#	161
	Maximum (1-7833) *7833	HX_MAX\#\#\#\#	161
Postal Codes - 2D			
2D Postal Codes	Off	POSTALO	161
Single 2D Postal Codes	Australian Post On	POSTAL1	161
	British Post On	POSTAL7	161
	Canadian Post On	POSTAL30	161
	*Intelligent Mail Bar Code On	POSTAL10	161
	Japanese Post On	POSTAL3	162
	KIX Post On	POSTAL4	162
	Planet Code On	POSTAL5	162
	Postal-4i On	POSTAL9	162
	Postnet On	POSTAL6	162
	Postnet with B and B' Fields On	POSTAL11	162
	InfoMail On	POSTAL2	162
Combination 2D Postal Codes	InfoMail and British Post On	POSTAL8	162
	Intelligent Mail Bar Code and Postnet with B and B' Fields On	POSTAL20	162
	Postnet and Postal-4i On	POSTAL14	163
	Postnet and Intelligent Mail Bar Code On	POSTAL16	163
	Postal-4i and Intelligent Mail Bar Code On	POSTAL17	163
	Postal-4i and Postnet with B and B' Fields On	POSTAL19	163
	Planet and Postnet On	POSTAL12	163
	Planet and Postnet with B and B' Fields On	POSTAL18	163
	Planet and Postal-4i On	POSTAL13	163
	Planet and Intelligent Mail Bar Code On	POSTAL15	163
	Planet, Postnet, and Postal-4i On	POSTAL21	163
	Planet, Postnet, and Intelligent Mail Bar Code On	POSTAL22	163

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Combination 2D Postal Codes (continued)	Planet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL23	164
	Postnet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL24	164
	Planet, Postal-4i, and Postnet with B and B' Fields On	POSTAL25	164
	Planet, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL26	164
	Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL27	164
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet On	POSTAL28	164
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL29	164
Planet Code Check Digit	Transmit	PLNCKX1	164
	*Don't Transmit	PLNCKXO	165
Postnet Check Digit	Transmit	NETCKX1	165
	*Don't Transmit	NETCKXO	165
Australian Post Interpretation	*Bar Output	AUSINTO	165
	Numeric N Table	AUSINT1	165
	Alphanumeric C Table	AUSINT2	165
	Combination N and C Tables	AUSINT3	166
Postal Codes - Linear			
China Post (Hong Kong 2 of 5)	Default All China Post (Hong Kong 2 of 5) Settings	CPCDFT	166
	*Off	CPCENAO	166
	On	CPCENA1	166
China Post (Hong Kong 2 of 5) Msg. Length	Minimum (2-80)*4	CPCMIN\#\#	166
	Maximum (2-80)*80	CPCMAX\#\#	166
Korea Post	Default All Korea Post Settings	KPCDFT	167
	*Off	KPCENAO	167
	On	KPCENA1	167
Korea Post Msg. Length	Minimum (2-80)*4	KPCMIN\#\#	167
	Maximum (2-80)*48	KPCMAX\#\#	167
Korea Post Check Digit	Transmit Check Digit	KPCCHK1	167
	*Don't Transmit Check Digit	KPCCHKO	167
Imaging Default Commands			
Image Snap	Default all Imaging Commands	IMGDFT	169
	Imaging Style - Decoding	SNPSTYO	170

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Image Snap (Continued)	*Imaging Style - Photo	SNPSTY1	170
	Imaging Style - Manual	SNPSTY2	170
	Beeper On	SNPBEP1	170
	*Beeper Off	SNPBEPO	170
	*Wait for Trigger Off	SNPTRGO	171
	Wait for Trigger On	SNPTRG1	171
	*LED State - Off	SNPLEDO	171
	LED State - On	SNPLED1	171
	Exposure (1-*7874 microseconds)	SNPEXP	171
	*Gain - None	SNPGAN1	172
	Gain - Medium	SNPGAN2	172
	Gain - Heavy	SNPGAN4	172
	Gain - Maximum	SNPGAN8	172
	Target White Value (0-255) *125	SNPWHT\#\#\#	172
	Delta for Acceptance (0-255) *25	SNPDEL\#\#\#	172
	Update Tries (0-10) *6	SNPTRY\#\#	173
	Target Set Point Percentage (1-99) *50	SNPPCT\#\#	173
Image Ship	*Infinity Filter - Off	IMGINFO	174
	Infinity Filter - On	IMGINF1	174
	*Compensation Off	IMGCORO	174
	Compensation On	IMGCOR1	174
	*Pixel Depth - 8 bits/pixel (grayscale)	IMGBPP8	174
	Pixel Depth - 1 bit/pixel (B\&W)	IMGBPP1	174
	*Don't Sharpen Edges	IMGEDGO	175
	Sharpen Edges (0-23)	IMGEDG\#\#	175
	*File Format - JPEG	IMGFMT6	176
	File Format - KIM	IMGFMTO	176
	File Format - TIFF binary	IMGFMT1	176
	File Format - TIFF binary group 4, compressed	IMGFMT2	176
	File Format - TIFF grayscale	IMGFMT3	176
	File Format - Uncompressed binary	IMGFMT4	176
	File Format - Uncompressed grayscale	IMGFMT5	176
	File Format - BMP	IMGFMT8	176
	*Histogram Stretch Off	IMGHISO	176
	Histogram Stretch On	IMGHIS1	176

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Image Ship (Continued)	*Noise Reduction Off	IMGFSPO	177
	Noise Reduction On	IMGFSP1	177
	Invert Image around X axis	IMGNVX1	177
	Invert Image around Y axis	IMGNVY1	177
	Rotate Image none	IMGROTO	178
	Rotate Image 90° right	IMGROT1	178
	Rotate Image 180° right	IMGROT2	178
	Rotate Image 90° left	IMGROT3	178
	JPEG Image Quality (0-100) *50	IMGJQF\#\#\#	178
	*Gamma Correction Off	IMGGAMO	179
	Gamma Correction On (0-1000)	IMGGAM\#\#\#	179
	Image Crop - Left (0-843) *0	IMGWNL\#\#\#	179
	Image Crop - Right (0-843) *843	IMGWNR\#\#\#	179
	Image Crop - Top (0-639) *0	IMGWNT\#\#\#	179
	Image Crop - Bottom (0-639) *639	IMGWNB\#\#\#	180
	Image Crop - Margin (1-238) *0	IMGMAR\#\#\#	180
	Protocol - None (raw)	IMGXFRO	180
	Protocol - None (default USB)	IMGXFR2	180
	Protocol - Hmodem Compressed	IMGXFR3	180
	Protocol-Hmodem	IMGXFR4	180
	*Ship Every Pixel	IMGSUB1	181
	Ship Every 2nd Pixel	IMGSUB2	181
	Ship Every 3rd Pixel	IMGSUB3	181
	*Document Image Filter Off	IMGUSHO	181
	Document Image Filter On (0-255)	IMGUSH\#\#\#	181
	*Don't Ship Histogram	IMGHSTO	182
	Ship Histogram	IMGHST1	182
Image Size Compatibility	Force VGA Resolution	IMGVGA1	182
	*Native Resolution	IMGVGAO	183
Intelligent Signature Capture	Optimize On	DECBND1	183
	*Optimize Off	DECBNDO	183
Utilities			
Add Code I.D. Prefix to All Symbologies (Temporary)		PRECA2,BK2995C80!	189
Show Software Revision		REVINF	189
Test Menu	On	TSTMNU1	190
	*Off	TSTMNUO	190

Selection	Setting *Indicates default	Serial Command \# Indicates a numeric entry	Page
	*Decoding Apps On	PLGDCE1	190
	Decoding Apps Off	PLGDCEO	190
	*Formatting Apps On	PLGFOE1	190
	Formatting Apps Off	PLGFOEO	190
	List Apps	PLGINF	190
Reset the Factory Defaults	Remove Custom Defaults	DEFOVR	191
	Activate Defaults	DEFALT	191

ADVANCED APPLICATION PROGRAMMING

The following commands are used when coding user interface commands for the 8680i directly into an application.

Note: The 8680i Software Development Kit can also be used to program the 8680i UI. See the 8680i Software Development Kit User Guide at www.honeywellaidc.com.

Beeper and LED Sequences

This command causes one of the following beeper and LED sequences to be executed, based on a required character parameter, for example, BEPEHA1. See Good Read and Error Indicators on page 56 for further information.

1 Execute an LED sequence of 130 milliseconds of good read LED illumination followed by 70 milliseconds of no illumination.

2 Execute an LED sequence of 1500 milliseconds of good read LED illumination followed by 500 milliseconds of no illumination.

3 Execute an LED sequence of 4500 milliseconds of good read LED illumination followed by 500 milliseconds of no illumination.

4 Execute a beep sequence (no LED) of 160 milliseconds at 1600 Hz .
5 Execute a beep sequence (no LED) of 160 milliseconds at 3250 Hz .
6 Execute a beep sequence (no LED) of 160 milliseconds at 4200 Hz .
7 Execute a good read beep sequence.
8 Execute an error beep sequence. When using host acknowledgment, BEPEHA8 also indicates an erroneous host acknowledgment (see Host Acknowledgment on page 52).
a Execute a menu good beep sequence.
b Execute a menu error beep sequence.

```
char cBeepMenuString[] = "\x16M\x0DBEPEHA1.";
```

SynMenuCmdSync (cBeepMenuString);

BEPEXE

This causes a standard beep sequence or an error beep sequence to be executed. BEPEXE requires a numeric parameter, where values of 1,2 and 3 cause the standard beep sequence and 4 causes the error beep sequence to be executed.

Sample

char cBeepMenuString[] = "\x16M\x0DBEPEXE1.";
SynMenuCmdSync (cBeepMenuString);

Text Settings

GUITXT

This command sends left-justified text to the display. The text is in UTF-8 format. If the text is too long, it is truncated.

Byte	Value	Notes
0	O or 1	The line where the text is placed.
$1 \ldots \mathrm{n}$	UTF-8	The text to display.

Sample

This string sends " Hi " to the first line (binary O):
GUITXT004869
This data is a binary byte 0 , followed by the two ASCII characters:

Byte	Value
0	0×00 (line 0)
1	$0 \times 48(\mathbf{H})$
2	$0 \times 69(\mathbf{i})$

The hex string encoding is:

Byte	Value
0	$0 \times 32(\mathbf{0})$
1	$0 \times 32(\mathbf{0})$
2	$0 \times 34(4)$
3	$0 \times 38(8)$

Byte	Value
4	$0 \times 36(6)$
5	$0 \times 39(9)$

Text Size Line 1

GUIFSU

This command controls the size of the text on the display for line 1.

Byte	Value
0	Small
1	Medium (default)
2	Large

Sample

```
char cFntMenuString[] = "\x16M\x0DGUIFSU1.";
SynMenuCmdSync(cFntMenuString);
```


Text Size Line 2

GUIFSD

This command controls the size of the text on the display for line 2.

Byte	Value
0	Small
1	Medium (default)
2	Large

Sample

```
char cFntMenuString[] = "\x16M\x0DGUIFSD2.";
SynMenuCmdSync(cFntMenuString);
```


Single Line Display or Large Font

Set GUIFSD to 10 and use GUITXTOOxxxx to write text to display line 1.

Text Color - Foreground Line 1

GUITCU

This command uses a hex string to set the foreground color of the display text for line 1.

Byte	Value
0	Red
1	Green
2	Blue

Valid values are 00-FF. Default $=$ FFFFFF (white).
Sample
char cClrMenuString[] = "\x16M\x0DGUITCUFFFFFF.";
SynMenuCmdSync (cClrMenuString);

Text Color - Foreground Line 2

GUITCD

This command uses a hex string to set the foreground color of the display text for line 2.

Byte	Value
0	Red
1	Green
2	Blue

Valid values are 00-FF. Default = FFFFFF (white).
Sample
char cClrMenuString[] = "\x16M\x0DGUITCDFFFFFF.";
SynMenuCmdSync (cClrMenuString);

Text Color - Background

GUITBC

This command uses a hex string to set the background color of the display text.

Byte	Value
0	Red

Byte	Value
1	Green
2	Blue

Valid values are 00-FF. Default $=000000$ (black).
Sample
char cT_ClrMenuString[] = "\x16M\x0DGUITBC000000.";
SynMenuCmdSync(cT_ClrMenuString);

Screen Display Settings

Backlight Level

GUIBAK
This command uses a numeric entry to set the display's backlight level, from dimmer to brighter.

Valid values are 0-100. Default $=85$.
Sample

```
char cGuiControlString[] = "\x16M\x0DGUIBAK50.";
```

SynMenuCmdSync (cGuiControlString) ;

Scan Time

GUISCT
This sets how many seconds a good or bad scan remains on the display. Valid values are 0-30. Default $=30$.

Sample

```
char cGuiControlString[] = "\x16M\x0DGUISCT4.";
SynMenuCmdSync(cGuiControlString);
```

This sets how many seconds the display remains on after receiving a message. Valid values are 0-30. Default = 3 .

Sample
char cDisplayTimeString[] = "\x16M\x0DDISTIM3.";
SynMenuCmdSync (cDisplayTimeString) ;

Button Notifications

GUIBNE

This command turns the button notifications on or off by enabling or disabling them. If the button is detected, a <SYN $>$ FE message is sent to the host.

When button detection is enabled/on, a button press causes the GUIBTN message to be sent to the host. GUIBTNx, where $x=1$ (left button), $x=2$ (right button), or $x=3$ (both buttons).

Value	Function
0	Disable/Off
1	Enable/On

Default $=0$ (Disable/Off).
Sample

```
char cGuiControlString[] = "\x16M\x0DGUIBNE1.";
```

SynMenuCmdSync (cGuiControlString) ;

Language Setting

GUICTY

This sets the display language characters.

Value	Function
0	English
1	Cyrillic

Default = 0 (English).

```
Char cGuiControlString[] = "\x16M\x0DGUICTY1.";
SynMenuCmdSync(cGuiControlString);
```


Icon Bar

GUIICN

This command turns the icon bar on or off by enabling or disabling it.

Value	Function
0	Disable/Off
1	Enable/On

Default $=0$ (Disable/Off).
Sample

```
char cGuiControlString[] = "\x16M\x0DGUIICN0.";
SynMenuCmdSync(cGuiControlString);
```

This command shows product information such as; IP Address, Firmware Version, Wi-Fi MAC Address, and/or Bluetooth MAC Address.

Value	Function
0	Off
1	IP Address
2	Firmware Version
3	Wi-Fi MAC Address
4	Bluetooth MAC Address

Default = 0 (Off).
Sample

```
Char cGuiControlString[] = "\x16M\x0DGUIINF0.";
SynMenuCmdSync(cGuiControlString);
```


PRODUCT SPECIFICATIONS

8680i Wearable Mini Mobile Computer

Parameter	Specification
Mechanical	
With BAT-SCNO3 standard capacity battery:	
Height	1.2 inches (31.3mm)
Length	3.2 inches (81mm)
Width	2.2 inches (56mm)
Weight	5.3 ounces (151g)
With BAT-SCNO2 high capacity battery:	
Height	1.4 inches (35mm)
Length	3.2 inches (81mm)
Width	2.2 inches (56mm)
Weight	5.9 ounces (168g)
Electrical	
Illumination	White LED (exempt risk group)
Aiming	$650 n m$ high visibility red laser (Class 2)
BAT-SCNO3 standard capacity battery:	Lithium ion
Expected Number of Scans	$3.7 v 1150 \mathrm{mAh}$
Expected Hours of Operation	3000
Expected Charge Time	8 hours
BAT-SCNO2 high capacity battery	4 hours
Expected Number of Scans	3.8 v 2160 mAh
Expected Hours of Operation	8000
Expected Charge Time	10 hours

Parameter	Specification
Radio	
Bluetooth Radio	
Frequency	2.4 to 2.5 GHz (ISM Band) Frequency Hopping
Specification	v.4.2 (BDR, EDR, LE) Class 1
Range	328 ft . (100m) line of sight
Data Rate	Up to 1 Mbps
WiFi Radio	
Frequency	2.4 to 2.5 GHz and 5.1 to 5.85 GHz (ISM Bands)
Specification	802.11a/b/g/n/ac
Data Rate	802.11b: up to 11 Mbps
	802.11a/g: up to 54 Mbps
	802.11n: up to 135 Mbps
	802.11 ac: up to 780 Mbps
Environmental	
Operating Temperature	$-4^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Storage Temperature	$-4^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Humidity	Up to 95\%, non-condensing
Drop	Operational after 30 drops from 5 feet (1.5 m) to concrete
Environmental Sealing	IP54
Vibration	Withstands 10G peak from 10 to 500 Hz
ESD	20 kV air, 10kV contact
Tumble	Operational after 2000 tumbles from 19.7 inches (. 05 m)
Image	
Image Size	844×640 pixels
Scan Performance	
Pitch, Skew	$\pm 45^{\circ}, \pm 60^{\circ}$
Symbol Contrast	20\%
Motion Tolerance:	up to 230 inches (584 cm) per second in total darkness for 100\% UPC at 4 inch (10cm) distance
Depth of Field	
Typical Performance	
100\% UPC	44-552mm (1.7-21.7 in.)
10 mil Code 39	65-544mm (2.6-21.4 in.)
20 mil Code 39	49-812mm (1.9-32 in.)
10 mil Data Matrix	113-275mm (4.5-10.8 in.)
6.7 mil PDF417	120-225mm (4.7-8.9 in.)
Guaranteed Performance	
100\% UPC	48-516mm (1.9-20.3 in.)

Parameter	Specification
10 mil Code 39	$73-473 \mathrm{~mm}(2.9-18.6 \mathrm{in})$.
20 mil Code 39	$54-593 \mathrm{~mm}(2.1-23.3 \mathrm{in)}$.
10 mil Data Matrix	$120-261 \mathrm{~mm}(4.7-10.3 \mathrm{in})$.
6.7 mil PDF417	$129-220 \mathrm{~mm}(5.1-8.7 \mathrm{in})$.

MB4-SCN02 Charge Base Product Specifications

Parameter	Specification
Mechanical	
Height	1.97 inches (50mm)
Length	5.8 inches (147 mm)
Width	5.3 inches (134 mm)
Weight	16.6 oz (0.47kg)
Electrical	
Voltage	5.2 volts
Current Draw	1A output for each port
Charge Time	4 hours at room temperature of $46^{\circ} \mathrm{F}$ to $91^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right.$ to $33^{\circ} \mathrm{C}$) 8 hours at a temperatures lower than $46^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$ or higher than $91^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$
Environmental	
Operating Temperature	$32^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Storage Temperature	$-4^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Humidity	Up to 95\% non-condensing
Mechanical Drop	Operational after 6 drops from 2.9 feet (0.9 m) to concrete
Vibration	2G Peak from 2 Hz to 200 Hz
ESD Sensitivity	Up to 15 kV direct air Up to 8 kV contact and indirect

MB4-BAT-SCNO2 Charge Base Product Specifications

Parameter	Specification
Mechanical	2.68 inches (68mm)
Height	5.8 inches (147mm)
Length	5.3 inches $(134 \mathrm{~mm})$
Width	17.6 oz $(0.5 \mathrm{~kg})$
Weight	

Parameter (Continued)	Specification
Electrical	4.2 volts (BAT-SCNO3 standard capacity battery) 4.35 volts (BAT-SCNO2 high capacity battery)
Voltage	1 A output for each port
Current Draw	4 hours at room temperature of $46^{\circ} \mathrm{F}$ to $91^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right.$ to $\left.33^{\circ} \mathrm{C}\right)$ 8 hours at a temperatures lower than $46^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$ or higher than $91^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$
Charge Time	
Environmental	$32^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Operating Temperature	$-4^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Storage Temperature	Up to 95% non-condensing
Humidity	Operational after 6 drops from 2.9 feet $(0.9 ~ m) ~ t o ~ c o n c r e t e ~$
Mechanical Drop	2 G Peak from 2 Hz to 200 Hz
Vibration	Up to 15 kV direct air Up to 8 kV contact and indirect
ESD Sensitivity	

Required Safety Labels

8680i Wearable Mini Mobile Computer

MB4-SCNO2 and MB4-BAT-SCN02 Charge Bases

MAINTENANCE AND TROUBLESHOOTING

Repairs

Repairs and/or upgrades are not to be performed on this product. These services are to be performed only by an authorized service center (see Customer Support on page ix).

Maintenance

Your device provides reliable and efficient operation with a minimum of care. Although specific maintenance is not required, the following periodic checks ensure dependable operation:

Clean the Scanner

The scanner housing may be cleaned with a soft cloth or tissue dampened with water (or a mild detergent-water solution.) If a detergent solution is used, rinse with a clean tissue dampened with water only.

Caution: Do not submerge the scanner in water. The scanner's housing is not watertight. Do not use abrasive wipes or tissues on the scanner's window or display. Abrasive wipes may scratch the window or display. Never use solvents (e.g., acetone) on the housing, window, or display. Solvents may damage the finish, window, or display.

Clean the Window or Display

Reading performance may degrade if the scanner's window or display is not clean. If the window or display is visibly dirty, or if the scanner isn't operating well, clean it with a soft cloth or tissue dampened with water (or a mild detergent-water solution.) If a detergent solution is used, rinse with a clean tissue dampened with water only.

Replace the Finger Strap

Replace the finger strap when it becomes old or worn.

1. Open the length of the old finger strap so it is only attached to one side of the device. Slide the silver spring bar to detach the finger strap from the device.

2. Slide and hold the silver spring bar on the new finger strap and slide it into place.
3. Release the spring bar.

Troubleshooting

Note: Make sure your battery is charged.
Is the scanner having trouble reading your symbols?
If the scanner isn't reading symbols well, check that the symbols:

- Aren't smeared, rough, scratched, or exhibiting voids.
- Aren't coated with frost or water droplets on the surface.
- Are enabled in the host to which the scanner connects.

Is the bar code displayed but not entered into the application?

The bar code is displayed on the host device correctly, but you still have to press a key to enter it (the Enter/Return key or the Tab key, for example).

- You need to program a suffix. Programming a suffix enables the scanner to output the bar code data plus the key you need (such as "CR") to enter the data
into your application. Refer to Prefix/Suffix Overview on page 81 for further information.

The scanner won't read your bar code at all.

- Scan the sample bar codes from Sample Symbols, beginning on page 251. If the scanner reads the sample bar codes, check that your bar code is readable.
- Verify that your bar code symbology is enabled (see Chapter 6).
- If the scanner still can't read the sample bar codes, scan All Symbologies on page 108.

APPENDIX

REFERENCE CHARTS

Symbology Charts

Note: "m" represents the AIM modifier character. Refer to International Technical Specification, Symbology Identifiers, for AIM modifier character details.

Prefix/Suffix entries for specific symbologies override the universal (All Symbologies, 99) entry.

Refer to Data Edit beginning on page 81 and Data Format beginning on page 87 for information about using Code ID and AIM ID.

Linear Symbologies

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Codabar]Fm	0-1	a	61
Code 11]H3		h	68
Code 128]Cm	0, 1, 2, 4	j	6A
Code 32 Pharmaceutical (PARAF)]XO		<	3C
Code 39 (supports Full ASCII mode)]Am	0, 1, 3, 4, 5, 7	b	62
TCIF Linked Code 39 (TLC39)]L2		T	54
Code 93 and 93i]Gm	$\begin{aligned} & 0-9, A-Z, \\ & \text { a-m } \end{aligned}$	i	69
EAN]Em	0, 1, 3, 4	d	64
EAN-13 (including Bookland EAN)]EO		d	64
EAN-13 with Add-On]E3		d	64
EAN-13 with Extended Coupon Code]E3		d	64
EAN-8]E4		D	44

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
EAN-8 with Add-On]E3		D	44
GS1				
GS1 DataBar]em	0	y	79
GS1 DataBar Limited]em		\{	7B
GS1 DataBar Expanded]em		\}	7D
GS1-128]C1		1	49
2 of 5				
China Post (Hong Kong 2 of 5)]X0		Q	51
Interleaved 2 of 5] lm	0, 1, 3	e	65
Matrix 2 of 5]X0		m	6D
NEC 2 of 5]X0		Y	59
Straight 2 of 5 IATA	JRm	0, 1, 3	f	66
Straight 2 of 5 Industrial]SO		f	66
MSI]Mm	0, 1	g	67
Telepen]Bm		t	74
UPC		O, 1, 2, 3, 8, 9, A, B, C		
UPC-A]EO		c	63
UPC-A with Add-On]E3		c	63
UPC-A with Extended Coupon Code]E3		C	63
UPC-E]EO		E	45
UPC-E with Add-On]E3		E	45
UPC-E1]X0		E	45

Add Honeywell Code ID				5 C80
Add AIM Code ID				5 C81
Add Backslash				$5 C 5 C$

2D Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers $\mathbf{(m)}$	ID	Hex
All Symbologies				99
Aztec Code	Jzm	O-9, A-C	z	7 A
Chinese Sensible Code (Han Xin Code)	JXO		H	48

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
Codablock A	106	0, 1, 4, 5, 6	V	56
Codablock F]Om	0, 1, 4, 5, 6	q	71
Code 49	JTm	0, 1, 2, 4	l	6C
Data Matrix]dm	0-6	w	77
Dot Code]JO		.	2E
GS1]em	0-3	y	79
GS1 Composite]em	0-3	y	79
GS1 DataBar Omnidirectional]em	0-3	y	79
MaxiCode]Um	0-3	x	78
PDF417]Lm	0-2	r	72
MicroPDF417]Lm	0-5	R	52
QR Code]Qm	0-6	S	73
Micro QR Code]Qm		S	73

Postal Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Australian Post]X0		A	41
British Post]X0		B	42
Canadian Post]X0		C	43
China Post]X0		Q	51
InfoMail]X0		,	2c
Intelligent Mail Bar Code]X0		M	4D
Japanese Post]X0		J	4A
KIX (Netherlands) Post]X0		K	4B
Korea Post]X0		?	3F
Planet Code]X0		L	4C
Postal-4i]X0		N	4E
Postnet]X0		P	50

ASCII Conversion Chart (Code Page 1252)

In keyboard applications, ASCII Control Characters can be represented in 3 different ways, as shown below. The CTRL+X function is OS and application dependent. The following table lists some commonly used Microsoft functionality. This table applies to U.S. style keyboards. Certain characters may differ depending on your Country Code/PC regional settings.

Non-printable ASCII control characters			Keyboard Control + ASCII (CTRL+X) Mode		
			Control + X Mode Off (KBDCASO)	Windows Mode Control + X Mode On (KBDCAS2)	
DEC	HEX	Char		CTRL + X	$\begin{aligned} & \text { CTRL + X } \\ & \text { function } \end{aligned}$
0	00	NUL	Reserved	CTRL+ @	
1	01	SOH	NP Enter	CTRL+ A	Select all
2	02	STX	Caps Lock	CTRL+ B	Bold
3	03	ETX	ALT Make	CTRL+ C	Copy
4	04	EOT	ALT Break	CTRL+ D	Bookmark
5	05	ENQ	CTRL Make	CTRL+E	Center
6	06	ACK	CTRL Break	CTRL+ F	Find
7	07	BEL	Enter / Ret	CTRL+ G	
8	08	BS	(Apple Make)	CTRL+ H	History
9	09	HT	Tab	CTRL+ I	Italic
10	OA	LF	(Apple Break)	CTRL+ J	Justify
11	OB	VT	Tab	CTRL+ K	hyperlink
12	OC	FF	Delete	CTRL+ L	list, left align
13	OD	CR	Enter / Ret	CTRL+ M	
14	OE	SO	Insert	CTRL+ N	New
15	OF	SI	ESC	CTRL+ O	Open
16	10	DLE	F11	CTRL+ P	Print
17	11	DC1	Home	CTRL+ Q	Quit
18	12	DC2	PrtScn	CTRL+ R	
19	13	DC3	Backspace	CTRL+ S	Save
20	14	DC4	Back Tab	CTRL+ T	
21	15	NAK	F12	CTRL+ U	
22	16	SYN	F1	CTRL+ V	Paste
23	17	ETB	F2	CTRL+ W	
24	18	CAN	F3	CTRL+ X	
25	19	EM	F4	CTRL+ Y	?
26	1A	SUB	F5	CTRL+ Z	?
27	1B	ESC	F6	CTRL+ [?
28	1 C	FS	F7	CTRL+ 1	?
29	1D	GS	F8	CTRL+]	?
30	1E	RS	F9	CTRL+^	?
31	1F	US	F10	CTRL+ -	?
127	7F	\bigcirc	NP Enter		?

Lower ASCII Reference Table

Note: Windows Code page 1252 and lower ASCII use the same characters.
Printable Characters

DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character
32	20	<SPACE>	64	40	@	96	60	
33	21	!	65	41	A	97	61	a
34	22	"	66	42	B	98	62	b
35	23	\#	67	43	C	99	63	c
36	24	\$	68	44	D	100	64	d
37	25	\%	69	45	E	101	65	e
38	26	\&	70	46	F	102	66	f
39	27	'	71	47	G	103	67	g
40	28	$($	72	48	H	104	68	h
41	29)	73	49	I	105	69	i
42	2A	*	74	4A	J	106	6A	j
43	2B	+	75	4B	K	107	6B	k
44	2C	,	76	4C	L	108	6C	I
45	2D	-	77	4D	M	109	6D	m
46	2E	.	78	4E	N	110	6E	n
47	2F	1	79	4F	0	111	6F	o
48	30	0	80	50	P	112	70	p
49	31	1	81	51	Q	113	71	q
50	32	2	82	52	R	114	72	r
51	33	3	83	53	S	115	73	s
52	34	4	84	54	T	116	74	t
53	35	5	85	55	U	117	75	u
54	36	6	86	56	V	118	76	v
55	37	7	87	57	W	119	77	w
56	38	8	88	58	X	120	78	x
57	39	9	89	59	Y	121	79	y
58	3A	:	90	5A	Z	122	7A	z
59	3B	,	91	5B	[123	7B	\{
60	3C	<	92	5C	1	124	7C	\|
61	3D	$=$	93	5D]	125	7D	\}
62	3E	$>$	94	5E	\wedge	126	7E	\sim
63	3F	?	95	5F	-	127	7F	\bigcirc

Extended ASCII Characters

DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
128	80	$€$	Ç	up arrow \uparrow	0x48
129	81		ü	down arrow \downarrow	0x50
130	82	,	é	right arrow \longrightarrow	0x4B
131	83	f	â	left arrow \leftarrow	0x4D
132	84	"	ä	Insert	0×52
133	85	...	à	Delete	0x53
134	86	\dagger	a	Home	0x47
135	87	\ddagger	ç	End	0x4F
136	88	,	ê	Page Up	0x49
137	89	\%	ë	Page Down	0×51
138	8A	Š	è	Right ALT	0x38
139	8B	<	ï	Right CTRL	0x1D

Extended ASCII Characters (Continued)

DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
140	8C	©	î	Reserved	n/a	
141	8D		i	Reserved	n/a	
142	8E	Ž	Ä	Numeric Keypad Enter	0x1C	
143	8F		A	Numeric Keypad /	0×35	
144	90		É	F1	0x3B	
145	91	'	æ	F2	$0 \times 3 \mathrm{C}$	
146	92	,	\nLeftarrow	F3	0x3D	
147	93	"	ô	F4	0x3E	
148	94	"	ö	F5	0x3F	
149	95	-	ò	F6	0x40	
150	96	-	û	F7	0×41	
151	97	-	ù	F8	0x42	
152	98	\sim	$\ddot{\text { y }}$	F9	0×43	
153	99	TM	Ö	F10	0x44	
154	9A	š	Ü	F11	0x57	
155	9B	,	¢	F12	0x58	
156	9C	œ	£	Numeric Keypad +	0x4E	
157	9D		$¥$	Numeric Keypad -	0x4A	
158	9E	ž	Pts	Numeric Keypad *	0x37	
159	9F	\ddot{Y}	f	Caps Lock	0x3A	
160	A0		á	Num Lock	0×45	
161	A1	i	í	Left Alt	0×38	
162	A2	¢	ó	Left Ctrl	0x1D	
163	A3	£	ú	Left Shift	0x2A	
164	A4	a	ñ	Right Shift	0×36	
165	A5	¥	\tilde{N}	Print Screen	n/a	
166	A6	i	a	Tab	0x0F	
167	A7	§	-	Shift Tab	0x8F	
168	A8		¿	Enter	0x1C	
169	A9	©	-	Esc	0×01	
170	AA	a	ᄀ	Alt Make	0×36	
171	AB	"	1/2	Alt Break	0xB6	
172	AC	ᄀ	$1 / 4$	Control Make	0x1D	
173	AD		i	Control Break	0x9D	
174	AE	®	«	Alt Sequence with 1 Character	0×36	
175	AF		"	Ctrl Sequence with 1 Character	0x1D	
176	B0	。	\%			
177	B1	\pm	衰			
178	B2	2				
179	B3	${ }^{3}$				
180	B4	,	-			
181	B5	μ	$=$			
182	B6	I	-			
183	B7	.	7			
184	B8		7			
185	B9	1	$\stackrel{1}{1}$			
186	BA	-	\|			
187	BB	"	7			
188	BC	$1 / 4$	\pm			
189	BD	1/2	-			
190	BE	3/4	\pm			
191	BF	¿	7			
192	C0	À	L			
193	C1	Á	\perp			

Extended ASCII Characters（Continued）

DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
194	C2	Â	T		
195	C3	Ã	F		
196	C4	Ä	－		
197	C5	Å	í		
198	C6	\nLeftarrow	F		
199	C7	Ç	IF		
200	C8	Ė	L		
201	C9	É	「		
202	CA	Ê	$\xrightarrow{\text { IL }}$		
203	CB	Ë	\bar{T}		
204	CC	ì	15		
205	CD	i	$=$		
206	CE	î	\pm		
207	CF	Ï	$\stackrel{1}{1}$		
208	D0	Đ	－		
209	D1	N	〒		
210	D2	Ò	π		
211	D3	Ó	IL		
212	D4	Ô	t		
213	D5	Õ	F		
214	D6	Ö	π		
215	D7	\times	\＃		
216	D8	\varnothing	\＃		
217	D9	Ù	」		
218	DA	Ú	Γ		
219	DB	Û			
220	DC	Ü	\square		
221	DD	Ý			
222	DE	P	－		
223	DF	B	\square		
224	E0	à	a		
225	E1	á	B		
226	E2	â	Γ		
227	E3	ã	π		
228	E4	ä	Σ		
229	E5	å	σ		
230	E6	æ	μ		
231	E7	¢̧	T		
232	E8	è	Φ		
233	E9	é	Θ		
234	EA	ê	Ω		
235	EB	ë	δ		
236	EC	i	∞		
237	ED	í	φ		
238	EE	î	ε		
239	EF	ï	\cap		
240	F0	ð	三		
241	F1	ñ	\pm		
242	F2	ò	\geq		
243	F3	ó	\leq		
244	F4	ô	1		
245	F5	õ	J		
246	F6	ö	\div		
247	F7	\div	\approx		

Extended ASCII Characters (Continued)

DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
248	F8	\varnothing	-		
249	F9	ù			
250	FA	ú	.		
251	FB	ù	\checkmark		
252	FC	ü	n		
253	FD	y	2		
254	FE	p	-		
255	FF	$\ddot{\text { y }}$			

ISO 2022/ISO 646 Character Replacements

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, select the code page with which the bar codes were created. The data characters should then appear properly.

Code Page Selection Method/ Country	Standard	Keyboard Country	Honeywell Code Page Option
United States (standard ASCII)	ISO/IEC 646-IRV	n/a	1
Automatic National Character Replacement	ISO/IEC 2022	n/a	2 (default)
Binary Code page	n/a	n/a	3
Default "Automatic National Character replacement" selects the below Honeywell Code Page options for Code128, Code 39 and Code 93.	\begin{tabular}{l\|l	l	}
\hline			
\end{tabular}			
United States	ISO/IEC 646-06	0	1
Canada	ISO /IEC 646-121	54	95
Canada	ISO /IEC 646-122	18	96
Japan	ISO/IEC 646-14	28	98
China	ISO/IEC 646-57	92	99
Great Britain (UK)	ISO /IEC 646-04	7	87
France	ISO /IEC 646-69	3	83
Germany	ISO/IEC646-21	4	84
Switzerland	ISO /IEC 646-CH	6	86
Sweden / Finland (extended Annex C)	ISO/IEC 646-11	2	82
Ireland	ISO /IEC 646-207	73	97
Denmark	ISO/IEC 646-08	8	88
Norway	ISO/IEC 646-60	9	94
Italy	ISO/IEC 646-15	5	85
Portugal	ISO/IEC 646-16	13	92
Spain	ISO/IEC 646-17	10	90

Code Page Selection Method/ Country	Standard	Keyboard Country	Honeywell Code Page Option
Spain	ISO/IEC 646-85	51	91

Dec			35	36	64	91	92	93	94	96	123	124	125	126
Hex			23	24	40	5B	5 C	5 D	5 E	60	78	7 C	70	7 E
us	0	1	\#	\$	@	[1]	\wedge	-	\{	1	\}	~
CA	54	95	\#	\$	à	â	¢	ê	̂̀	ô	é	ù	è	û
CA	18	96	\#	\$	à	â	¢	ê	É	ô	é	ù	è	û
JP	28	98	\#	\$	@	[\ddagger]	\wedge	.	\{	1	\}	-
CN	92	99	\#	¥	@	[1]	\wedge	,	\{	1	\}	-
GB	7	87	£	\$	@	[1]	\wedge	,	\{	1	\}	\sim
FR	3	83	£	\$	à	-	¢	§	\wedge	μ	é	ù	è	*
DE	4	84	\#	\$	§	Ä	Ö	Ü	\wedge	-	ä	ӧ	ü	B
CH	6	86	ù	\$	à	é	¢	ê	̂̂	ô	ä	ö	ü	û
SE/FI	2	82	\#	¢	É	Ä	Ö	Å	Ü	é	ä	ӧ	a	ü
DK	8	88	\#	\$	@	¢	\varnothing	Å	\wedge	,	æ	\varnothing	a	~
No	9	94	\#	\$	@	E	\varnothing	Å	\wedge	.	\nsim	\varnothing	à	-
IE	73	97	£	\$	ó	É	Í	Ú	Á	ó	é	í	ú	á
$1{ }^{\text {I }}$	5	85	£	\$	§	-	¢̧	é	\wedge	ù	à	ò	è	i
PT	13	92	\#	\$	§	Ã	Ç	õ	\wedge	,	ã	¢	õ	-
ES	10	90	\#	\$	§	i	N	¿	\wedge	-	-	ñ	¢	~
ES	51	91	\#	\$.	i	\tilde{N}	ç	¿	-	,	ñ	ç	
			ISO	IEC	6 N	na	har	er	ac	en				

Keyboard Key References

6E $70717273 \quad 74757677 \quad 7879$ 7A 7B	7C 7D 7E	
010203040506070809 OA OB OC OD OF	4B 5055	5A 5F 6469
$10 \quad 111213141516171819$ 1A 1B 1C 1D	4C5156	5B 6065
1E 1F 20212223242526272829 2B		5C 6166
2C 2E 2F $3031323334353637 \times 39$	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{BC} \quad 3 \mathrm{D} \quad 3 \mathrm{EF} 3840$	4F 5459	$63 \quad 68{ }^{6 C}$

104 Key U.S. Style Keyboard

6E $70717273 \quad 74757677 \quad 78797 \mathrm{~A} 7 \mathrm{~B}$	$\begin{aligned} & 7 C 7 D 7 E \\ & 4 B 5055 \end{aligned}$	
010203040506070809 OA OB OC OD OF		5A 5F 6469
10111213141516171819 1A 1B 1C 2 C	4C5156	5B 6065
1E 1F 20212223242526272829 2A		$5 \mathrm{C} 61{ }^{66}{ }^{6}$
2C 2D 2E 2F $3031323334353637 \quad 39$	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{BC} \quad 3 \mathrm{D} \quad 3 \mathrm{l}$	4F 5459	6368

105 Key European Style Keyboard

SAMPLE SYMBOLS

01234567890

Straight 2 of 5 Industrial

123456
Matrix 2 of 5

6543210

SAMPLE SYMBOLS (CONTINUED)

Postnet
l...IlıIlı...Ilılılı..Ilıl...ll

Zip Code

Note: If you make an error while scanning the letters or digits (before scanning Save), scan Discard, scan the correct letters or digits, and Save again.

Honeywell
9680 Old Bailes Road
Fort Mill, SC 29707
www.honeywellaidc.com

